1.已知sinα是方程5x2-7x-6=0的根,α是第三象限角,求$\frac{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α)ta{n}^{3}α}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)}$的值.

分析 由已知條件求出sinα,進一步求得tanα,然后利用誘導公式化簡求值.

解答 解:由5x2-7x-6=0,得x=2或x=$-\frac{3}{5}$,
∵sinα是方程5x2-7x-6=0的根,∴sinα=$-\frac{3}{5}$.
又α是第三象限角,∴cosα=$-\frac{4}{5}$,tanα=$\frac{sinα}{cosα}=\frac{3}{4}$.
∴$\frac{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α)ta{n}^{3}α}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)}$=$\frac{-sin(\frac{3π}{2}+α)sin(\frac{3π}{2}-α)ta{n}^{3}α}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)}$
=$\frac{cosα(-cosα)ta{n}^{3}α}{sinα(-sinα)}$=tanα=$\frac{3}{4}$.

點評 本題考查三角函數(shù)中的恒等變換應用,考查了誘導公式的應用,是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≤1}\\{y≤2}\\{2x+y-2≥0}\end{array}\right.$,那么|x-y|的最大值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓C的中心在原點O,焦點在x軸上,離心率為$\frac{1}{2}$,左焦點到左頂點的距離為1.
(1)求橢圓C的標準方程;
(2)過點M(1,1)的直線與橢圓C相交于A,B兩點,且點M為弦AB中點,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在△ABC中,AB=3,AC=2,BC=4,則$\overrightarrow{BA}$•$\overrightarrow{AC}$等于( 。
A.-$\frac{3}{2}$B.-$\frac{2}{3}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=x2+1.
(1)判斷函數(shù)f(x)的奇偶性;
(2)用定義法證明函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列4個命題:
①命題“若x2-3x+2=0,則x=l”的逆否命題為:“若x≠1,則x2-3x+2≠0”;
②若p:(x一1)(x-2)≤0,q:log2(x+1)≥1,則p是q的充分不必要條件;
③若?p或q是假命題,則p且q是假命題;
④對于命題p:存在x∈R,使得x2+x+1<0.則,?p:任意x∈R,均有x2+x+l≥0;
其中正確命題的個數(shù)是( 。
A..1個B.2個C..3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.計算2log525+3log264-8log71的值為( 。
A.14B.8C.22D.27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.下列四種說法中,正確的個數(shù)有(  )
①命題“?x∈R,均有x2-3x-2≥0”的否定是:“?x0∈R,使得x${\;}_{0}^{2}$-3x0-2≤0”;
②“命題P∨Q為真”是“命題P∧Q為真”的必要不充分條件;
③?m∈R,使$f(x)=m{x^{{m^2}+2m}}$是冪函數(shù),且在(0,+∞)上是單調(diào)遞增;
④不過原點(0,0)的直線方程都可以表示成$\frac{x}{a}+\frac{y}=1$;
⑤在線性回歸分析中,相關系數(shù)r的值越大,變量間的相關性越強.
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若log0.2x>1,則x的取值范圍是(0,0.2).

查看答案和解析>>

同步練習冊答案