4.已知函數(shù)y=tanωx在區(qū)間(0,$\frac{π}{4}$),($\frac{π}{4},\frac{π}{2}$)上單調(diào)遞增,但在區(qū)間(0,$\frac{π}{2}$)上沒(méi)有單調(diào)性,則ω可以是( 。
A.-2B.2C.-1D.1

分析 根據(jù)正切函數(shù)的單調(diào)性和單調(diào)區(qū)間進(jìn)行求解即可.

解答 解:∵函數(shù)y=tanωx在區(qū)間(0,$\frac{π}{4}$),($\frac{π}{4},\frac{π}{2}$)上單調(diào)遞增,
∴ω>0;
又y在區(qū)間(0,$\frac{π}{2}$)上沒(méi)有單調(diào)性,
∴函數(shù)y=tanωx的最小正周期滿足:
$\frac{π}{4}$<T≤$\frac{π}{2}$,
即$\frac{π}{4}$<$\frac{π}{ω}$≤$\frac{π}{2}$,
∴2≤ω<4,
∴ω可以是2.
故選:B.

點(diǎn)評(píng) 本題主要考查了正切函數(shù)單調(diào)性的應(yīng)用問(wèn)題,根據(jù)條件確定最小正周期T是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在正方體中ABCD-A′B′C′D′中,點(diǎn)E為底面ABCD上的動(dòng)點(diǎn),若三棱錐B-D′EC的體積最大,則點(diǎn)E(  )
A.位于線段AB上B.位于線段AD上C.只能在A點(diǎn)D.只能在AB的中點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.命題“?x∈R,x2-x-1=0”的否定是假命題.(填“真”或“假”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合A={a,b},B={0,1},則下列對(duì)應(yīng)不是從A到B的映射的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在等比數(shù)列{an}中,若a1=-1,a2+a3=-2,則其公比為-2或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.點(diǎn)M(x,y)在函數(shù)y=-$\sqrt{1-{x}^{2}}$的圖象上,則$\frac{y-1}{x}$的取值范圍是(  )
A.[-1,1]B.(-1,1)C.(-∞,-1)∪(1,+∞)D.(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.如圖,△ABC是圓O的內(nèi)接三角形,P是BA的延長(zhǎng)線上一點(diǎn),且PC切圓O于點(diǎn)C.
(1)求證:AC•PC=PA•BC;
(2)若PA=AB=BC,且PC=4,求AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.△ABC是邊長(zhǎng)為2的等邊三角形,向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{AB}$=2$\overrightarrow{a}$,$\overrightarrow{AC}$=2$\overrightarrow{a}$+$\overrightarrow$,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,若a4+a9=10,則S12等于( 。
A.30B.45C.60D.120

查看答案和解析>>

同步練習(xí)冊(cè)答案