8.給出下列命題:
①把函數(shù)y=sin(x-$\frac{π}{3}$)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,縱坐標(biāo)不變,得到函數(shù)y=sin(2x-$\frac{π}{3}$);
②若α,β是第一象限角且α<β,則cosα>cosβ;
③x=-$\frac{π}{8}$是函數(shù)y=cos(2x+$\frac{5}{4}$π)的一條對稱軸;
④函數(shù)y=4sin(2x+$\frac{π}{3}$)與函數(shù)y=4cos(2x-$\frac{π}{6}$)相同;
⑤y=2sin(2x-$\frac{π}{3}$)在[0,$\frac{π}{2}$]是增函數(shù);
則正確命題的序號①③④.

分析 利用函數(shù)y=Asin(ωx+φ)的圖象性質(zhì),以及它的圖象的變換規(guī)律,正弦函數(shù)單調(diào)性、圖象的對稱性,得出結(jié)論.

解答 解:對于①,把函數(shù)y=sin(x-$\frac{π}{3}$)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,縱坐標(biāo)不變,得到函數(shù)y=sin(2x-$\frac{π}{3}$),故①正確.
對于②,當(dāng)α,β是第一象限角且α<β,如α=30°,β=390°,則此時有cosα=cosβ=$\frac{\sqrt{3}}{2}$,故②錯誤.
對于③,當(dāng)x=-$\frac{π}{8}$時,2x+$\frac{5}{4}$π=π,函數(shù)y=cos(2x+$\frac{5}{4}$π)=-1,為函數(shù)的最小值,故x=-$\frac{π}{8}$是函數(shù)y=cos(2x+$\frac{5}{4}$π)的一條對稱軸,故③正確.
對于④,函數(shù)y=4sin(2x+$\frac{π}{3}$)=4cos[$\frac{π}{2}$-(2x+$\frac{π}{3}$)]=4cos($\frac{π}{6}$-2)=4cos(2x-$\frac{π}{6}$),
故函數(shù)y=4sin(2x+$\frac{π}{3}$)與函數(shù)y=4cos(2x-$\frac{π}{6}$)相同,故④正確.
對于⑤,在[0,$\frac{π}{2}$]上,2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],函數(shù)y=2sin(2x-$\frac{π}{3}$)在[0,$\frac{π}{2}$]上沒有單調(diào)性,故⑤錯誤,
故答案為:①③④.

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象性質(zhì),以及它的圖象的變換規(guī)律,正弦函數(shù)單調(diào)性、圖象的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.從5名女同學(xué)和4名男同學(xué)中選出4人參加四場不同的演講,分別按下列要求,各有多少種不同選法?
(1)男、女同學(xué)各2名;
(2)男、女同學(xué)分別至少有1名;
(3)男、女同學(xué)分別至少有1名且男同學(xué)甲與女同學(xué)乙不能同時選出.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一個高為H容積為V的魚缸的軸截面如圖所示.現(xiàn)向空魚缸內(nèi)注水,直到注滿為止.當(dāng)魚缸水深為h時,水的體積記為v.函數(shù)v=f(h)的大致圖象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.對甲、乙兩名自行車賽手在相同條件下進(jìn)行了6次測試,測得他們的最大速度(單位:m/s)的數(shù)據(jù)如表:
293735332650
323328344043
(1)畫出莖葉圖;
(2)分別求出甲、乙兩名自行車賽手最大速度(單位:m/s)的數(shù)據(jù)的平均數(shù)、方差,你認(rèn)為選誰參加比賽更合適并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若cos($\frac{π}{6}$-α)=$\frac{3}{5}$,則cos($\frac{5π}{6}$+α)的值是( 。
A.$\frac{3}{5}$B.-$\frac{3}{5}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.先將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個單位,然后再將所得圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的2倍,最后再將所得圖象向上平移1個單位,得到函數(shù)y=sinx的圖象.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于點(diǎn)M($\frac{π}{4}$,2)對稱,求函數(shù)y=g(x)在[0,$\frac{π}{2}$]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如果圖中所示的流程圖的輸出結(jié)果為-18,那么在判斷框①中用i表示的“條件”應(yīng)該是i>8?.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.集合M={x|0≤x<2},集合N={x|x2+2x-3<0},則集合M∩N=( 。
A.{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x≤1}D.{x|0≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,扇形AOB是某個旅游景點(diǎn)的平面示意圖,圓心角AOB的大小等于$\frac{π}{3}$,半徑OA=200m,點(diǎn)M在半徑OA上,點(diǎn)N在$\widehat{AB}$上,且MN∥OB,求觀光道路OM與MN長度之和的最大值.

查看答案和解析>>

同步練習(xí)冊答案