分析 (1)利用向量的坐標(biāo)表示,化簡(jiǎn)求得f(x)=cos(2x+$\frac{π}{3}$)+1,由余弦函數(shù)圖象,即可求得f(x)≥$\frac{1}{2}$的解集;
(2)由f($\frac{B}{2}$)=1,代入f(x)的解析,求得B的值,根據(jù)余弦定理,即可求得a的值.
解答 解:(1)f(x)=$\overrightarrow{m}$•($\frac{1}{2}$$\overrightarrow{m}$-$\overrightarrow{n}$)=$\frac{1}{2}$.$\overrightarrow{m}$2-$\overrightarrow{m}$•$\overrightarrow{n}$,
=$\frac{1}{2}$(cos2x+sin2x)+cos2x-$\sqrt{3}$sinxcosx),
=$\frac{1}{2}$+$\frac{1}{2}$+$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x,
=cos(2x+$\frac{π}{3}$)+1,
f(x)≥$\frac{1}{2}$,即cos(2x+$\frac{π}{3}$)≥-$\frac{1}{2}$,
∴由余弦函數(shù)圖象可知:2kπ-$\frac{2π}{3}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{2π}{3}$,k∈Z,
解得:x∈[kπ-$\frac{π}{2}$,kπ+$\frac{π}{6}$],k∈Z,
使不等式f(x)≥$\frac{1}{2}$成立的x的取值為:[kπ-$\frac{π}{2}$,kπ+$\frac{π}{6}$],k∈Z;
(2)f($\frac{B}{2}$)=1,即:cos(B+$\frac{π}{3}$)+1=1,
∴cos(B+$\frac{π}{3}$)=0,B是△ABC內(nèi)角的內(nèi)角,
∴B=$\frac{π}{6}$,
由余弦定理可知:b2=a2+c2-2accosB,
∴1=a2+3-2×1×$\sqrt{3}$×$\frac{\sqrt{3}}{2}$,
解得:a=1,
∴a=1.
點(diǎn)評(píng) 本題考查平面向量數(shù)量積的坐標(biāo)運(yùn)算,考查三角恒等變換的應(yīng)用,突出考單調(diào)性,考查轉(zhuǎn)化思想與運(yùn)算求解能力.屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{9}$ | B. | $\frac{5}{9}$ | C. | $\frac{10}{9}$ | D. | $\frac{11}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [2,3) | B. | (2,3] | C. | (3,4] | D. | [3,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0} | B. | {-1} | C. | {0,-1,-2} | D. | {0,-1} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com