12.若函數(shù)f(x)=cosωx(ω>0)在區(qū)間(-$\frac{π}{3}$,$\frac{π}{4}$)上有且只有兩個(gè)極值點(diǎn),則ω的取值范圍是( 。
A.[2,3)B.(2,3]C.(3,4]D.[3,4)

分析 根據(jù)f(x)的對稱性可知f(x)的一個(gè)極值點(diǎn)必定落在區(qū)間(-$\frac{π}{3}$,-$\frac{π}{4}$]上.從而得出f(x)的周期的范圍,列出不等式解出即可.

解答 解:∵f(x)是偶函數(shù),且x=0為f(x)的一個(gè)極值點(diǎn),
∴f(x)的另一個(gè)極值點(diǎn)在(-$\frac{π}{3}$,-$\frac{π}{4}$]取得,
設(shè)f(x)的周期為T,
則$\frac{π}{4}≤\frac{T}{2}<\frac{π}{3}$,即$\frac{π}{4}≤\frac{π}{ω}<\frac{π}{3}$,解得3<ω≤4.
故選:C.

點(diǎn)評 本題考查了余弦函數(shù)的圖象與性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知z1=$\frac{16}{a+5}$-(10-a2)i,z2=$\frac{2}{1-a}$+(2a-5)i,a∈R,i為虛數(shù)單位.若z1+z2是實(shí)數(shù).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求$\overline{z_1}$•z2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.等差數(shù)列的通項(xiàng)an=3n-2,則a20=(  )
A.58B.59C.78D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=[2sin(x+$\frac{2π}{3}$)+sinx]•cosx-$\sqrt{3}$sin2x;將f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位后得g(x)的圖象.
(1)求函數(shù)g(x)在[0,π]上的值域;
(2)在△ABC中,若$\frac{sinB}$=$\frac{\sqrt{3}a}{cosA}$,a=4,求$\sqrt{3}$b-c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.向量$\overrightarrow{m}$=(cosx,sinx),$\overrightarrow$=(-cosx,$\sqrt{3}$cosx),x∈R,函數(shù)f(x)=$\overrightarrow{m}$•($\frac{1}{2}$$\overrightarrow{m}$-$\overrightarrow{n}$).
(1)求使不等式f(x)≥$\frac{1}{2}$成立的x的取值范圍;
(2)記△ABC內(nèi)角A,B,C的對邊分別為a,b,c,若f($\frac{B}{2}$)=1,b=1,c=$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知三條直線l1、l2、l3,它們的傾斜角之比依次為1:2:3,若l2的斜率為$\sqrt{3}$,求其余兩條直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{xy≥0}\\{{x}^{2}+{y}^{2}≤4}\\{x+y-1≤0}\end{array}\right.$,則z=2x+y的最小值是(  )
A.-2$\sqrt{5}$B.2C.2$\sqrt{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)函數(shù)y=x3與y=($\frac{1}{2}$)x-2的圖象的交點(diǎn)為(x0,y0),若x0∈(n,n+1),n∈N,則x0所在的區(qū)間是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)函數(shù)f(x),若f(x)=$\left\{{\begin{array}{l}{{x^2}+2x+2,x≤0}\\{-{x^2},x>0}\end{array}}$,f(f(1))=1.

查看答案和解析>>

同步練習(xí)冊答案