1.已知函數(shù)f(x)=$\frac{ax+1}{{x}^{2}+b}$是偶函數(shù),則a=0,b的取值范圍是b∈R.

分析 利用偶函數(shù)的定義建立方程f(-x)=f(x),然后求解a.函數(shù)f(x)=$\frac{ax+1}{{x}^{2}+b}$是偶函數(shù),所以b≤0.

解答 解:因?yàn)楹瘮?shù)f(x)=$\frac{ax+1}{{x}^{2}+b}$是偶函數(shù),所以f(-x)=f(x),
即$\frac{-ax+1}{{x}^{2}+b}$=$\frac{ax+1}{{x}^{2}+b}$,即-ax+1=ax+1,所以a=0.
函數(shù)f(x)=$\frac{ax+1}{{x}^{2}+b}$是偶函數(shù),所以b∈R.
故答案為0,b∈R.

點(diǎn)評(píng) 本題考查了函數(shù)奇偶性的應(yīng)用,函數(shù)奇偶性的應(yīng)用主要是通過(guò)定義,構(gòu)建一個(gè)條件方程f(-x)=f(x)或f(-x)=-f(x),或者是利用函數(shù)奇偶性的運(yùn)算性質(zhì)來(lái)判斷的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)平面直角坐標(biāo)系原點(diǎn)與極坐標(biāo)極點(diǎn)重合,x軸正半軸與極軸重合,若已知曲線(xiàn)C的極坐標(biāo)方程為ρ2=$\frac{12}{{3{{cos}^2}θ+{{sin}^2}θ}}$,點(diǎn)F1,F(xiàn)2為其左右焦點(diǎn),直線(xiàn)l的參數(shù)方程為$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$為參數(shù),t∈R)
(1)求直線(xiàn)l的普通方程和曲線(xiàn)C的參數(shù)方程;
(2)求曲線(xiàn)C上的點(diǎn)到直線(xiàn)l的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在△ABC中,B=45°,c=1.5,b=2,那么sinC=$\frac{3\sqrt{2}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知x>1,y>2,且xy=2x+y+6,則x+2y的最小值是(  )
A.7B.9C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)設(shè)A={x|x是小于9的正整數(shù)},B={1,2,3},求A∩B,∁AB;
(2)已知集合A={x|-3<x<1},B={x|2<x<10},求A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知集合A={x|3≤x<10},B={x|2x-8≥0},則∁R(A∩B)={x|x<4或x≥10}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓C1、拋物線(xiàn)C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn)O,從每條曲線(xiàn)上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中:
x3-24$\sqrt{2}$
y-2$\sqrt{3}$0-4$\frac{\sqrt{2}}{2}$
(1)求C1,C2的標(biāo)準(zhǔn)方程;
(2)已知直線(xiàn)l過(guò)C2的焦點(diǎn)F并與C1交于不同的兩點(diǎn)M,N,且滿(mǎn)足$\overrightarrow{OM}$⊥$\overrightarrow{ON}$.求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)y=3tan($\frac{x}{2}$+$\frac{π}{3}$)的最小正周期為2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知直線(xiàn)l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=\frac{\sqrt{2}}{2}+\sqrt{3}t}\end{array}\right.$ (t為參數(shù)),若以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,得曲線(xiàn)C的極坐標(biāo)方程為ρ=2cos(θ-$\frac{π}{4}$).
(1)求直線(xiàn)l的傾斜角和曲線(xiàn)C的直角坐標(biāo)方程;
(2)若直線(xiàn)l與曲線(xiàn)C交于A,B兩點(diǎn),設(shè)點(diǎn)P(0,$\frac{\sqrt{2}}{2}$),求|PA|+|PB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案