16.(1)設(shè)A={x|x是小于9的正整數(shù)},B={1,2,3},求A∩B,∁AB;
(2)已知集合A={x|-3<x<1},B={x|2<x<10},求A∪B.

分析 (1)用列舉法表示A,再由交集、補(bǔ)集運(yùn)算得答案;
(2)直接利用并集運(yùn)算得答案.

解答 解:(1)由題設(shè)得A={1,2,3,4,5,6,7,8},B={1,2,3},
∴A∩B={1,2,3},
AB={4,5,6,7,8};
(2)A={x|-3<x<1},B={x|2<x<10},
則A∪B={x|-3<x<1或2<x<10}.

點(diǎn)評(píng) 本題考查交、并、補(bǔ)集的混合運(yùn)算,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若等比數(shù)列{an}滿足anan+1=64n,則{an}的公比為(  )
A.±8B.8C.±16D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.對(duì)于集合A,B我們定義集合A×B={(a,b)|a∈A,b∈B},例如A={1,2},B={3,4},則有A×B={(1,3),(1,4),(2,3),(2,4)}據(jù)此定義回答下列問(wèn)題:
(1)已知A×B={(1,2),(2,2)},求集合A,B;
(2)若A中有三個(gè)元素,B中有四個(gè)元素,試確定A×B中有幾個(gè)元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x}^{2}+1,x<1\\|lo{g}_{\frac{1}{2}}x|,x≥1\end{array}\right.$.
(1)在直角坐標(biāo)系中畫(huà)出該函數(shù)圖象的草圖;
(2)根據(jù)函數(shù)圖象的草圖,求函數(shù)y=f(x)值域,單調(diào)區(qū)間及零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)在R上可導(dǎo),下列說(shuō)法正確的是( 。
A.若f′(x)+f(x)>0,對(duì)任意x∈R恒成立,則有ef(2)<f(1)
B.若f′(x)-f(x)<0,對(duì)任意x∈R恒成立,則有e2f(-1)<f(1)
C.若f′(x)>1對(duì)任意x∈R恒成立,則有f(2)>f(1)
D.若f′(x)<1對(duì)任意x∈R恒成立,則有f(2)>f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=$\frac{ax+1}{{x}^{2}+b}$是偶函數(shù),則a=0,b的取值范圍是b∈R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.若圓O2:(x-3)2+(y+3)2=4關(guān)于直線l:ax+4y-6=0對(duì)稱(chēng),則直線l的斜率是-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=x2+bx為偶函數(shù),數(shù)列{an}滿足an+1=2f(an-1)+1,且a1=5,又設(shè)bn=log2(an-1),
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn=nbn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(1)在等差數(shù)列{an}中,已知d=2,n=15,an=-10,求a1及Sn;
(2)在等比數(shù)列{an}中,已知a2+a3=6,a3+a4=12,求q及S10

查看答案和解析>>

同步練習(xí)冊(cè)答案