在平面直角坐標(biāo)系中,不等式組
x+y≥0
x-y+4≥0
x≤a
所表示的平面區(qū)域的面積是9,則實(shí)數(shù)a的值為
1
1
分析:利用二元一次不等式組的定義作出對應(yīng)的圖象,找出對應(yīng)的平面區(qū)域,利用面積是9,可以求出a的數(shù)值.
解答:解:由圖象可知不等式對應(yīng)的平面區(qū)域?yàn)槿切蜝CD.
x+y=0
x-y+4=0
解得
x=-2
y=2
,即C(-2,2).由題意知a>-2.
x=a
x+y=0
x=a
y=-a
,即D(a,-a).
x=a
x-y+4=0
x=a
y=a+4
,即B(a,a+4),
所以|BD|=|2a+4|=2a+4,C到直線x=a的距離d=a-(-2)=a+2,
所以三角形BCD的面積為
1
2
×(a+2)(2a+4)=9
,
即(a+2)2=9,解得a=1或a=-5(舍去).
故答案為:1.
點(diǎn)評:本題主要考查一元二次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
,
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn)
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點(diǎn)
③直線l經(jīng)過無窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過兩個(gè)不同的整點(diǎn)
④直線y=kx+b經(jīng)過無窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個(gè)整點(diǎn)的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對稱的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
 

查看答案和解析>>

同步練習(xí)冊答案