乙兩艘輪船都要?客粋泊位,它們可以在一晝夜(零點至24點)的任意時刻到達,設(shè)甲、乙兩艘輪船?坎次坏臅r間分別是3小時和5小時,則有一艘輪船停靠泊位時必須等待一段時間的概率.
考點:幾何概型
專題:概率與統(tǒng)計
分析:由題意可知如兩船到達的時間間隔超過了停泊的時間則不需要等待,要求一艘船?坎次粫r必須等待一段時間的概率即計算一船到達的時間恰好另一船還沒有離開,此即是所研究的事件.
解答: 解:設(shè)甲船在x點到達,乙船在y點到達,必須等待的事件需要滿足如下條件
0<x<24
0<y<24
y-x<3
x-y<5

P(A)=
24×24-
1
2
×21×21-
1
2
×19×19
24×24
=
175
576


故答案為:
175
576
點評:考查幾何概率模型,考查用圖形法求概率,求解此類題的關(guān)鍵是得出所給的事件對應(yīng)的約束條件,作出符合條件的圖象,由圖形的測度得出相應(yīng)的概率.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=asinx+bx3+4(a∈R,b∈R),f′(x)為f(x)的導(dǎo)函數(shù),則f(2014)+f(-2014)+f′(2015)-f′(-2015)=( 。
A、0B、2014
C、2015D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2x,x>0
f(x+3),x≤0
,則f(-4)的值是(  )
A、-2B、-1C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+x2
(1)若函數(shù)g(x)=f(x)-ax在定義域內(nèi)為增函數(shù),求實數(shù)a的取值范圍;
(2)在(1)的條件下,且a>1,h(x)=e3x-3aex,x∈[0,ln2],求h(x)的極小值;
(3)設(shè)F(x)=2f(x)-3x2-k(k∈R),若函數(shù)F(x)存在兩個零點m,n(0<m<n),且滿足2x0=m+n,問:函數(shù)F(x)在(x0,F(xiàn)(x0))處的切線能否平行于x軸?若能,求出該切線方程,若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為迎接省運會在我市召開,美化城市,在某主干道上布置系列大型花盆,該圓形花盆直徑2米,內(nèi)部劃分為不同區(qū)域種植不同花草.如圖所示,在蝶形區(qū)域內(nèi)種植百日紅,該蝶形區(qū)域由四個對稱的全等三角形組成,其中一個三角形OAB的頂點O為圓心,A在圓周上,B在半徑OQ上,設(shè)計要求∠ABO=120°.
(1)請設(shè)置一個變量x,寫出該蝶形區(qū)域的面積S關(guān)于x的函數(shù)表達式;
(2)x為多少時,該蝶形區(qū)域面積S最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,1),
b
=(0,-1),若(
a
b
)∥
a
,則實數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),若x∈[
1
2
,1]時,不等式f(1+xlog2a)≤f(x-2)恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
lgx
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
m
x
有如下性質(zhì):如果常數(shù)m>0,那么該函數(shù)在(0,
m
]上是減函數(shù),在[
m
,+∞)上是增函數(shù).
(Ⅰ)如果函數(shù)f(x)=x+
2b
x
(x>0)在(0,4]上是減函數(shù),在[4,+∞)上是增函數(shù),求實數(shù)b的值;
(Ⅱ)求函數(shù)g(x)=x+
2
x
在x∈[a,a+1](a>0)上的最小值;
(Ⅲ)設(shè)常數(shù)c∈[1,4],求函數(shù)h(x)=x+
c
x
(1≤x≤2)的最大值.

查看答案和解析>>

同步練習(xí)冊答案