5.(Ⅰ)已知橢圓的長軸是短軸的3倍,且過點A(3,0),并且以坐標(biāo)軸為對稱軸,求橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)已知拋物線的頂點在原點,對稱軸為x軸,拋物線上一點P(-3,a)到焦點的距離為5,求拋物線的標(biāo)準(zhǔn)方程.

分析 (Ⅰ)分焦點在x軸與焦點在y軸討論,結(jié)合題意即可求得橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)先確定拋物線的焦點一定在x軸負(fù)半軸上,故可設(shè)出拋物線的標(biāo)準(zhǔn)方程,再由拋物線的定義,點M到焦點的距離等于到準(zhǔn)線的距離,即可求得拋物線方程.

解答 解:(Ⅰ)若橢圓的焦點在x軸上,
設(shè)方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$.
由題意$\left\{\begin{array}{l}2a=3×2b\\ \frac{9}{a^2}+\frac{0}{b^2}=1\end{array}\right.$
解得$\left\{\begin{array}{l}a=3\\ b=1\end{array}\right.$
∴橢圓的方程為$\frac{x^2}{9}+{y^2}=1$;
若橢圓的焦點在y軸上,
設(shè)方程為$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$,
由題意$\left\{\begin{array}{l}2a=3×2b\\ \frac{0}{a^2}+\frac{9}{b^2}=1\end{array}\right.$
解得$\left\{\begin{array}{l}a=9\\ b=3\end{array}\right.$
∴橢圓方程為$\frac{y^2}{81}+\frac{x^2}{9}=1$.
故橢圓方程為$\frac{x^2}{9}+{y^2}=1$,或$\frac{y^2}{81}+\frac{x^2}{9}=1$.
(Ⅱ)由已知設(shè)所求拋物線的方程為y2=-2px(p>0),
則準(zhǔn)線方程為$x=\frac{p}{2}$.
由定義知$\frac{p}{2}+3=5$,得p=4,
故所求方程為y2=-8x.

點評 本題考查橢圓的標(biāo)準(zhǔn)方程,考查分類討論思想與方程思想,考查拋物線的定義,拋物線的標(biāo)準(zhǔn)方程及其求法,利用定義將到焦點的距離轉(zhuǎn)化為到準(zhǔn)線的距離是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=2sin($\frac{x}{2}$+$\frac{π}{5}$)的周期是4π,振幅是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i是虛數(shù)單位,復(fù)數(shù)z滿足$\frac{1}{1+i}$-$\frac{1}{1-i}$=$\frac{1+z}{1-z}$,則|z|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=lnx+$\frac{1}{x}$.
(Ⅰ)求證:f(x)≥1;
(Ⅱ)若x-1>alnx對任意x>1恒成立,求實數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.邊界為y=0,x=e,y=x,及曲線y=$\frac{1}{x}$上的封閉圖形的面積為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.過點M(1,2)作直線l交橢圓$\frac{x^2}{25}$+$\frac{y^2}{16}$=1于A,B兩點,若點M恰為線段AB的中點,則直線l的方程為8x+25y-58=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.閱讀下列有關(guān)光線的入射與反射的兩個事實現(xiàn)象,現(xiàn)象(1):光線經(jīng)平面鏡反射滿足入射角i與反射角r相等(如圖19-1);現(xiàn)象(2):光線從橢圓的一個焦點出發(fā)經(jīng)橢圓反射后通過另一個焦點(如圖19-2).試結(jié)合上述事實現(xiàn)象完成下列問題:
(1)有一橢圓型臺球桌2a,長軸長為短軸長為2b.將一放置于焦點處的桌球擊出,經(jīng)過球桌邊緣的反射(假設(shè)球的反射完全符合現(xiàn)象(2))后第一次返回到該焦點時所經(jīng)過的路程記為S,求S的值(用a,b表示);
(2)結(jié)論:橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1上任一點P(x0,y0)處的切線l的方程為$\frac{{{x_0}x}}{a^2}$+$\frac{{{y_0}y}}{b^2}$=1.記橢圓C的方程為C:$\frac{x^2}{4}$+y2=1.
①過橢圓C的右準(zhǔn)線上任一點M向橢圓C引切線,切點分別為A,B,求證:直線lAB恒過一定點;
②設(shè)點P(x0,y0)為橢圓C上位于第一象限內(nèi)的動點,F(xiàn)1,F(xiàn)2為橢圓C的左右焦點,點I為△PF1F2的內(nèi)心,直線PI與x軸相交于點N,求點N橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在等差數(shù)列{an}中,若a4+a6+a8+a10+a12=120,則2a10-a11+a7的值為( 。
A.20B.22C.24D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$\vec a$=(-3,2,5),$\vec b$=(1,5,-1)則 $\vec a$+$\vec b$的值為(  )
A.(2,8,4)B.(1,3,6)C.(5,8,9)D.(-2,7,4)

查看答案和解析>>

同步練習(xí)冊答案