【題目】在△ABC中“sinA>sinB”是“cosA<cosB”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
【答案】
【解析】試題解析:必要性在△ABC中,“cosA>cosB”,由余弦函數(shù)在(0,π)是減函數(shù),故有A<B,
若B不是鈍角,顯然有“sinA<sinB”成立,
若B是鈍角,因?yàn)锳+B<π,故有A<π-B<,故有sinA<sin(π-B)=sinB
綜上,“cosA>cosB”可以推出“sinA<sinB”:
充分性:由“sinA<sinB”
若B是鈍角,在△ABC中,顯然有0<A<B<π,可得,“cosA>cosB”
若B不是鈍角,顯然有0<A<B<,此時(shí)也有cosA>cosB
綜上,“sinA<sinB”推出“cosA>cosB”成立
故,“cosA>cosB”是“sinA<sinB”的充要條件
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】條形碼是將寬度不等的多個(gè)黑條和空白,按照一定的編碼規(guī)則排列,用以表達(dá)一組信息的圖形標(biāo)識(shí)符。常見的條形碼是“”通用代碼,它是由從左到右排列的13個(gè)數(shù)字(用表示)組成,其中是校驗(yàn)碼,用來校驗(yàn)前12個(gè)數(shù)字代碼的正確性.下面的框圖是計(jì)算第13位校驗(yàn)碼的程序框圖,框圖中符號(hào)表示不超過的最大整數(shù)(例如).現(xiàn)有一條形碼如圖(1)所示,其中第6個(gè)數(shù)被污損, 那么這個(gè)被污損數(shù)字是( )
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x,g(x)=x-4,則下列結(jié)論正確的是( )
A.若h(x)=f(x)g(x),則函數(shù)h(x)的最小值為4
B.若h(x)=f(x)|g(x)|,則函數(shù)h(x)的值域?yàn)?/span>R
C.若h(x)=|f(x)|-|g(x)|,則函數(shù)h(x)有且僅有一個(gè)零點(diǎn)
D.若h(x)=|f(x)|-|g(x)|,則|h(x)|≤4恒成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為回饋顧客,新華都購物商場(chǎng)擬通過摸球兌獎(jiǎng)的方式對(duì)500位顧客進(jìn)行獎(jiǎng)勵(lì),規(guī)定:每位顧客從一個(gè)裝有4個(gè)標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個(gè)球(球的大小、形狀一模一樣),球上所標(biāo)的面值之和為該顧客所獲的獎(jiǎng)勵(lì)額.
(1)若袋中所裝的4個(gè)球中有1個(gè)所標(biāo)的面值為40元,其余3個(gè)所標(biāo)的面值均為20元,求顧客所獲的獎(jiǎng)勵(lì)額的分布列及數(shù)學(xué)期望;
(2)商場(chǎng)對(duì)獎(jiǎng)勵(lì)總額的預(yù)算是30000元,并規(guī)定袋中的4個(gè)球由標(biāo)有面值為20元和40元的兩種球共同組成,或標(biāo)有面值為15元和45元的兩種球共同組成.為了使顧客得到的獎(jiǎng)勵(lì)總額盡可能符合商場(chǎng)的預(yù)算且每位顧客所獲的獎(jiǎng)勵(lì)額相對(duì)均衡.請(qǐng)對(duì)袋中的4個(gè)球的面值給出一個(gè)合適的設(shè)計(jì),并說明理由.
提示:袋中的4個(gè)球由標(biāo)有面值為a元和b元的兩種球共同組成,即袋中的4個(gè)球所標(biāo)的面值“既有a元又有b元”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PD⊥底面ABCD,底面ABCD是邊長(zhǎng)為a的正方形,且PD=a.
(1)求四棱錐P﹣ABCD的體積;
(2)若E為PC中點(diǎn),求證:PA∥平面BDE;
(3)求直線PB與平面ABCD所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,圓O:,,,D為圓O上任意一點(diǎn),過D作圓O的切線分別交直線和于E,F兩點(diǎn),連AF,BE交于點(diǎn)G,若點(diǎn)G形成的軌跡為曲線C.
記AF,BE斜率分別為,,求的值并求曲線C的方程;
設(shè)直線l:與曲線C有兩個(gè)不同的交點(diǎn)P,Q,與直線交于點(diǎn)S,與直線交于點(diǎn)T,求的面積與面積的比值的最大值及取得最大值時(shí)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某房產(chǎn)中介公司2017年9月1日正式開業(yè),現(xiàn)對(duì)其每個(gè)月的二手房成交量進(jìn)行統(tǒng)計(jì),表示開業(yè)第個(gè)月的二手房成交量,得到統(tǒng)計(jì)表格如下:
(1)統(tǒng)計(jì)中常用相關(guān)系數(shù)來衡量?jī)蓚(gè)變量之間線性關(guān)系的強(qiáng)弱.統(tǒng)計(jì)學(xué)認(rèn)為,對(duì)于變量,如果,那么相關(guān)性很強(qiáng);如果,那么相關(guān)性一般;如果,那么相關(guān)性較弱.通過散點(diǎn)圖初步分析可用線性回歸模型擬合與的關(guān)系.計(jì)算的相關(guān)系數(shù),并回答是否可以認(rèn)為兩個(gè)變量具有很強(qiáng)的線性相關(guān)關(guān)系(計(jì)算結(jié)果精確到0.01)
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程(計(jì)算結(jié)果精確到0.01),并預(yù)測(cè)該房產(chǎn)中介公司2018年6月份的二手房成交量(計(jì)算結(jié)果四舍五入取整數(shù)).
(3)該房產(chǎn)中介為增加業(yè)績(jī),決定針對(duì)二手房成交客戶開展抽獎(jiǎng)活動(dòng).若抽中“一等獎(jiǎng)”獲6千元獎(jiǎng)金;抽中“二等獎(jiǎng)”獲3千元獎(jiǎng)金;抽中“祝您平安”,則沒有獎(jiǎng)金.已知一次抽獎(jiǎng)活動(dòng)中獲得“一等獎(jiǎng)”的概率為,獲得“二等獎(jiǎng)”的概率為,現(xiàn)有甲、乙兩個(gè)客戶參與抽獎(jiǎng)活動(dòng),假設(shè)他們是否中獎(jiǎng)相互獨(dú)立,求此二人所獲獎(jiǎng)金總額(千元)的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):,,,,.
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),若定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由.
(2)設(shè)是定義在上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;
(3)設(shè),若不是定義域R上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若的展開式中,第二、三、四項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列.
(1)求的值;
(2)此展開式中是否有常數(shù)項(xiàng),為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com