【題目】已知傾斜角為的直線過(guò)點(diǎn)和點(diǎn),點(diǎn)在第一象限,.

1)求的坐標(biāo);

2)若直線與兩平行直線,相交于兩點(diǎn),且,求實(shí)數(shù)的值;

3)記集合直線經(jīng)過(guò)點(diǎn)且與坐標(biāo)軸圍成的面積為,,針對(duì)的不同取值,討論集合中的元素個(gè)數(shù).

【答案】1;(223;(3)答案不唯一,見解析

【解析】

(1)先求出直線的方程,再根據(jù)方程設(shè)出的坐標(biāo),利用以及在第一象限,可解得;

(2)解方程組得的坐標(biāo),根據(jù)兩點(diǎn)間的距離可解得;

(3)設(shè)出直線的截距式方程,代入的坐標(biāo)并根據(jù)面積公式可得,再分2種情況去絕對(duì)值,利用判別式討論一元二次方程的根的個(gè)數(shù)可得.

(1)因?yàn)閮A斜角為的直線過(guò)點(diǎn),

所以由點(diǎn)斜式得,,

因?yàn)橹本過(guò)點(diǎn),所以設(shè),

所以,

因?yàn)?/span>,

所以,化簡(jiǎn)得,解得,

因?yàn)辄c(diǎn)在第一象限,所以,

所以,,

所以.

(2)聯(lián)立, 解得 ,所以,

聯(lián)立,解得,所以,

因?yàn)?/span>,所以,

化簡(jiǎn)得,

解得.

(3)因?yàn)?/span>,所以可設(shè)直線的截距式方程為,

因?yàn)橹本經(jīng)過(guò)點(diǎn),所以,

所以,

因?yàn)橹本與坐標(biāo)軸圍成的面積為,

所以,

所以,

當(dāng)時(shí),,整理得,

因?yàn)?/span>恒成立,所以一元二次方程恒有兩個(gè)非零實(shí)根,

當(dāng)時(shí),,整理得,

當(dāng),時(shí), 無(wú)解,

當(dāng),時(shí), 有且只有一個(gè)非零實(shí)根,

當(dāng),時(shí), 有兩個(gè)不相等的非零實(shí)根,

所以,當(dāng) 時(shí),直線有兩條,集合有兩個(gè)元素,

當(dāng)時(shí),直線有三條, 集合有三個(gè)元素,

當(dāng)時(shí),直線有四條, 集合有四個(gè)元素.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)整數(shù)是區(qū)間中的不同整數(shù).證明:集合有這樣的子集存在,它的所有元素之和能被整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

是函數(shù)的極值點(diǎn),1是函數(shù)的一個(gè)零點(diǎn),求的值;

當(dāng)時(shí),討論函數(shù)的單調(diào)性;

若對(duì)任意,都存在,使得成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的倍(橫坐標(biāo)不變),再向左平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,設(shè)函數(shù).

1)對(duì)函數(shù)的解析式;

2)若對(duì)任意,不等式恒成立,求的最小值;

3)若內(nèi)有兩個(gè)不同的解,,求的值(用含的式子表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩個(gè)不相等的非零向量,兩組向量,,,,,,均有2個(gè)3個(gè)按照某種順序排成一列所構(gòu)成,記,且表示所有可能取值中的最小值,有以下結(jié)論:①有5個(gè)不同的值;②若,則無(wú)關(guān);③ ,則無(wú)關(guān);④ ,則;⑤若,且,則的夾角為;正確的結(jié)論的序號(hào)是(

A.①②④B.②④C.②③D.①⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過(guò)A作AE⊥CD,垂足為E,現(xiàn)將△ADE沿AE折疊,使得DE⊥EC.

(1)求證:BC⊥面CDE;

(2)在線段AE上是否存在一點(diǎn)R,使得面BDR⊥面DCB,若存在,求出點(diǎn)R的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了測(cè)量某塔的高度,某人在一條水平公路兩點(diǎn)進(jìn)行測(cè)量.在點(diǎn)測(cè)得塔底在南偏西,塔頂仰角為,此人沿著南偏東方向前進(jìn)10米到點(diǎn),測(cè)得塔頂?shù)难鼋菫?/span>,則塔的高度為( )

A. 5米B. 10米C. 15米D. 20米

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)解不等式:

2)是否存在實(shí)數(shù)t,使得不等式,對(duì)任意的及任意銳角都成立,若存在,求出t的取值范圍:若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),N為不同的兩點(diǎn),直線l,=,下列命題正確中正確命題的序號(hào)是_______

1)若,則直線l與線段MN相交;

2)若=-1,則直線l經(jīng)過(guò)線段MN的中點(diǎn);

3)存在,使點(diǎn)M在直線l上;

4)存在,使過(guò)MN的直線與直線l重合.

查看答案和解析>>

同步練習(xí)冊(cè)答案