【題目】已知是定義在上的奇函數(shù),且為偶函數(shù),對于函數(shù)有下列幾種描述:

是周期函數(shù); 是它的一條對稱軸;

是它圖象的一個對稱中心; 時,它一定取最大值;

其中描述正確的是__________

【答案】①③

【解析】分析:本題函數(shù)的性質(zhì),先對已知是定義在的奇函數(shù),且為偶函數(shù)用定義轉(zhuǎn)化為恒等式,再由兩個恒等式進行合理變形得出與四個命題有關的結(jié)論通過推理證得①③正確.

詳解因為是定義在上的奇函數(shù),且為偶函數(shù),

所以,①

,②

,③

知函數(shù)有對稱軸,

②③,

,

,

故有,

兩者聯(lián)立得,

可見函數(shù)是周期函數(shù),且周期為,

,代入上式得

由此式可知:函數(shù)有對稱中心,由此證得③是正確命題,

所以當時,它取最大值或最小值,也可能不是最值,故錯誤,故答案為①③.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}滿足:a1=,a2=,且a1a2+a2a3+…+anan+1=na1an+1對任何的正整數(shù)n都成立,則的值為( 。

A. 5032 B. 5044 C. 5048 D. 5050

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形, 平面 , 中點.

(I)證明: 平面

(II)證明: 平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.

(1)求證: ;

(2)若中點,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓的離心率,左頂點為,過點作斜率為的直線交橢圓于點,交軸于點.

(1)求橢圓的方程;

(2)已知的中點,是否存在定點,對于任意的都有,若存在,求出點的坐標;若不存在,請說明理由;

(3)若過點作直線的平行線交橢圓于點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知為坐標原點,點的坐標為,點的坐標為,其中.設

)若,,求方程在區(qū)間內(nèi)的解集.

)若函數(shù)滿足:圖象關于點對稱,在處取得最小值,試確定應滿足的與之等價的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知多面體中,四邊形為矩形, , ,平面平面, 、分別為、的中點.

)求證:

)求證: 平面

)若過的平面交于點,交,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (e為自然對數(shù)的底).若函數(shù)g(x)=f(x)﹣kx恰好有兩個零點,則實數(shù)k的取值范圍是(
A.(1,e)
B.(e,10]
C.(1,10]
D.(10,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結(jié)論不正確的是________(填序號).

各個面都是三角形的幾何體是三棱錐;

以三角形的一條邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐;

棱錐的側(cè)棱長與底面多邊形的邊長相等,則此棱錐可能是六棱錐;

圓錐的頂點與底面圓周上的任意一點的連線都是母線.

查看答案和解析>>

同步練習冊答案