5.已知點(diǎn)F1、F2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左,右焦點(diǎn),過(guò)點(diǎn)F1的直線l與雙曲線C的左,右兩支分別交于P,Q兩點(diǎn),若△PQF2是以∠PQF2為為直角的等腰直角三角形,e為雙曲線C的離心率,則e2=5+2$\sqrt{2}$.

分析 設(shè)|QF2|=|PQ|=m,計(jì)算出|PF2|=$\sqrt{2}$m,運(yùn)用雙曲線的定義,再利用勾股定理,即可建立a,c的關(guān)系,從而求出e2的值.

解答 解:設(shè)|QF2|=|PQ|=m,
則|PF2|=$\sqrt{2}$m,
由雙曲線的定義可得|QF1|=m+2a,|PF1|=$\sqrt{2}$m-2a,
∵|PQ|=|QF1|-|PF1|=m,
∴m+2a-($\sqrt{2}$m-2a)=m,
∴4a=$\sqrt{2}$m,即m=2$\sqrt{2}$a,
∵△QF1F2為直角三角形,
∴|F1F2|2=|QF1|2+|QF2|2
∴4c2=(2+2$\sqrt{2}$)2a2+(2$\sqrt{2}$a)2,
∴4c2=(20+8$\sqrt{2}$)a2,
由e=$\frac{c}{a}$可得
e2=5+2$\sqrt{2}$.
故答案為:5+2$\sqrt{2}$.

點(diǎn)評(píng) 本題考查雙曲線的標(biāo)準(zhǔn)方程與性質(zhì):離心率,考查雙曲線的定義,利用勾股定理求解,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.直線y=m與曲線y=cosx(x∈(0,2π))的圖象有兩個(gè)交點(diǎn)(x1,m)和(x2,m),則m的取值范圍是(-1,1);x1+x2=2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,已知sinB=cosAsinC,$\overrightarrow{AB}$•$\overrightarrow{AC}$=9,△ABC的面積等于6.
(1)求角C;
(2)求△ABC的三條邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在空間直角坐標(biāo)系中,點(diǎn)B是點(diǎn)A(1,2,3)在坐標(biāo)平面xOy上的射影,O為坐標(biāo)原點(diǎn),則OB的長(zhǎng)為( 。
A.$\sqrt{10}$B.$\sqrt{13}$C.$\sqrt{14}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.雙曲線3x2-y2=75上一點(diǎn)P到它的一個(gè)焦點(diǎn)的距離等于12,那么點(diǎn)P到它的另一個(gè)焦點(diǎn)的距離等于22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.定義在實(shí)數(shù)集R上的偶函數(shù)y=f(x)滿(mǎn)足f(x+1)=f(1-x),且在區(qū)間[-1,0]上單調(diào)遞增,設(shè)a=f(1),$b=f({\sqrt{2}})$,c=f(2),則a,b,c的大小關(guān)系是( 。
A.a>b>cB.c>b>aC.b>c>aD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知雙曲線的一條漸近線方程為y=2x,則雙曲線的離心率為$\sqrt{5}$或$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.如圖網(wǎng)格紙上小正方形的邊長(zhǎng)為l,粗實(shí)線畫(huà)出的是某幾何體的三視圖,則這個(gè)幾何體的體積為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,在四面體ABCD中,CD=CB,AD⊥BD,點(diǎn)E,F(xiàn)分別是AB,BD的中點(diǎn).
(Ⅰ)求證:平面ABD⊥平面EFC;
(Ⅱ)當(dāng)AD=CD=BD=1,且EF⊥CF時(shí),求三棱錐C-ABD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案