一塊巖石在月球表面上以24m/s的速度垂直上拋,t s時達(dá)到的高度是s=24t-0.8t2.(用導(dǎo)數(shù)方法解答)
(1)求巖石在t時刻的速度和加速度;
(2)多少時間后巖石到達(dá)其最高點(diǎn)?
考點(diǎn):導(dǎo)數(shù)的幾何意義
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:位移的導(dǎo)數(shù)是速度,速度的導(dǎo)數(shù)是加速度,分別對位移求導(dǎo)、速度求導(dǎo)將t=4代入可得答案.
解答: 解:(1)v(t)=s′(t)=24-1.6t,
v′(t)=-1.6;
(2)巖石到達(dá)其最高點(diǎn)時的速度為0,即24-1.6t=0,解得t=15.
點(diǎn)評:本題考查了導(dǎo)數(shù)的物理意義,以及導(dǎo)數(shù)的運(yùn)算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過A(2,-3),B(-2,-5)兩點(diǎn),且圓心在直線x-2y-3=0上的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(x-2a)2(x≤0)
4
x
+x+a+1(x>0)
的最小值為f(0),則a的取值范圍是( 。
A、[-1,
5
4
]
B、[-1,0]
C、[0,
5
4
]
D、[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

{an}是等差數(shù)列,a1與a2的等差中項(xiàng)為1,a2與a3的等差中項(xiàng)為2,則公差d=( 。
A、2
B、
3
2
C、1
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
px2+2
-3x
的圖象經(jīng)過點(diǎn)(2,-
5
3

(1)求實(shí)數(shù)p的值,并寫出函數(shù)f(x)的解析式
(2)若x≠0,判斷f(x)的奇偶性,并證明
(3)求函數(shù)f(x)在[
1
2
,t]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)化簡求值
4x-
1
3
y
2
3
(-
1
3
x-2y
1
6
)(-6x
5
3
y-
1
2
)

(Ⅱ) (lg2)2+lg20•lg5+
1
9
log427•log98.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C是平面內(nèi)與兩個定點(diǎn)F1(-1,0)和F2(1,0)的距離的積等于常數(shù)m2(m>1)的點(diǎn)的軌跡.給出下列三個結(jié)論:①曲線C過坐標(biāo)原點(diǎn)②曲線C關(guān)于坐標(biāo)原點(diǎn)對稱③若點(diǎn)P在曲線C上,則△F1PF2的面積的最大值為
1
3
.其中所有正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
Z+
1
3
Z-
1
3
為純虛數(shù),求Z的模.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠甲、乙、丙三個車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為60件,40件,30件.為了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣方法抽取了一個容量為n的樣本進(jìn)行調(diào)查,若從丙車間的產(chǎn)品中抽取了3件,則n的值為( 。
A、9B、10C、12D、13

查看答案和解析>>

同步練習(xí)冊答案