【題目】已知拋物線C的頂點為原點,其焦點F(0,c)(c>0)到直線l:x﹣y﹣2=0的距離為 ,設(shè)P為直線l上的點,過點P作拋物線C的兩條切線PA,PB,其中A,B為切點.
(1)求拋物線C的方程;
(2)當(dāng)點P(x0 , y0)為直線l上的定點時,求直線AB的方程;
(3)當(dāng)點P在直線l上移動時,求|AF||BF|的最小值.

【答案】
(1)解:焦點F(0,c)(c>0)到直線l:x﹣y﹣2=0的距離 ,解得c=1,

所以拋物線C的方程為x2=4y.


(2)解:設(shè) ,

由(1)得拋物線C的方程為 ,所以切線PA,PB的斜率分別為 , ,

所以PA: ①PB:

聯(lián)立①②可得點P的坐標(biāo)為 ,即 , ,

又因為切線PA的斜率為 ,整理得 ,

直線AB的斜率

所以直線AB的方程為 ,

整理得 ,即 ,

因為點P(x0,y0)為直線l:x﹣y﹣2=0上的點,所以x0﹣y0﹣2=0,即y0=x0﹣2,

所以直線AB的方程為x0x﹣2y﹣2y0=0.


(3)解:根據(jù)拋物線的定義,有 , ,

所以 = ,

由(2)得x1+x2=2x0,x1x2=4y0,x0=y0+2,

所以 =

所以當(dāng) 時,|AF||BF|的最小值為


【解析】(1)利用焦點到直線l:x﹣y﹣2=0的距離建立關(guān)于變量c的方程,即可解得c,從而得出拋物線C的方程;(2)先設(shè) , ,由(1)得到拋物線C的方程求導(dǎo)數(shù),得到切線PA,PB的斜率,最后利用直線AB的斜率的不同表示形式,即可得出直線AB的方程;(3)根據(jù)拋物線的定義,有 , ,從而表示出|AF||BF|,再由(2)得x1+x2=2x0 , x1x2=4y0 , x0=y0+2,將它表示成關(guān)于y0的二次函數(shù)的形式,從而即可求出|AF||BF|的最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解該校學(xué)生對于某項運動的愛好是否與性別有關(guān),通過隨機抽查110名學(xué)生,得到如下的列聯(lián)表:

喜歡該項運動

不喜歡該項運動

總計

40

20

60

20

30

50

總計

60

50

110

由公式,算得

附表:

0.025

0.01

0.005

5.024

6.635

7.879

參照附表,以下結(jié)論正確的是( )

A. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關(guān)”

B. 在犯錯語的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關(guān)”

C. 有99%以上的把握認為“愛好該項運動與性別無關(guān)”

D. 有99%以上的把握認為“愛好該項運動與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面為矩形的四棱錐中,,,且,其中分別是線段的中點。

1)證明:平面

2)證明:平面

3)求:直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(坐標(biāo)系與參數(shù)方程選做題)
已知曲線C的參數(shù)方程為 (t為參數(shù)),C在點(1,1)處的切線為l,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,則l的極坐標(biāo)方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知六棱錐的底面是正六邊形,平面,給出下列結(jié)論:

②直線平面

③平面平面;

④異面直線所成角為;

⑤直線與平面所成角的余弦值為.

其中正確的有_______(把所有正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中.

(Ⅰ)當(dāng)時,求函數(shù)的極值;

(Ⅱ)當(dāng)時,證明:函數(shù)不可能存在兩個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD與正三角形BCE的邊長均為2,且平面ABCD⊥平面BCE,平面ABCD,

(I)求證:平面ABCD;

(II)求證:平面ACF⊥平面BDF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某種書籍每冊的成本費(元)與印刷冊數(shù)(千冊)的數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

4.83

4.22

0.3775

60.17

0.60

-39.38

4.8

表中,.

為了預(yù)測印刷20千冊時每冊的成本費,建立了兩個回歸模型:,.

(1)根據(jù)散點圖,你認為選擇哪個模型預(yù)測更可靠?(只選出模型即可)

(2)根據(jù)所給數(shù)據(jù)和(1)中選擇的模型,求關(guān)于的回歸方程,并預(yù)測印刷20千冊時每冊的成本費.

附:對于一組數(shù)據(jù),…,,其回歸方程的斜率和截距的最小二乘估計公式分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績和物理成績之間的關(guān)系,隨機抽取高二年級20名學(xué)生某次考試成績(百分制)如下表所示:

序號

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

數(shù)學(xué)成績

95

75

80

94

92

65

67

84

98

71

67

93

64

78

77

90

57

83

72

83

物理成績

90

63

72

87

91

71

58

82

93

81

77

82

48

85

69

91

61

84

78

86

若數(shù)學(xué)成績90分(含90分)以上為優(yōu)秀,物理成績85(含85分)以上為優(yōu)秀,則有多少把握認為學(xué)生的數(shù)學(xué)成績與物理成績有關(guān)系( )

A. 95% B. 97.5% C. 99.5% D. 99.9%

查看答案和解析>>

同步練習(xí)冊答案