【題目】對某種書籍每冊的成本費(元)與印刷冊數(shù)(千冊)的數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

4.83

4.22

0.3775

60.17

0.60

-39.38

4.8

表中,.

為了預測印刷20千冊時每冊的成本費,建立了兩個回歸模型:,.

(1)根據(jù)散點圖,你認為選擇哪個模型預測更可靠?(只選出模型即可)

(2)根據(jù)所給數(shù)據(jù)和(1)中選擇的模型,求關(guān)于的回歸方程,并預測印刷20千冊時每冊的成本費.

附:對于一組數(shù)據(jù),,…,,其回歸方程的斜率和截距的最小二乘估計公式分別為:.

【答案】(1)見解析.(2),1.6.

【解析】分析:(1)根據(jù)散點呈曲線趨勢,選模型更可靠. (2)根據(jù)公式求得,根據(jù)求得,最后求自變量為20 對應得函數(shù)值.

詳解:(1)由散點圖可以判斷,模型更可靠.

(2)令,則,

.

,

關(guān)于的線性回歸方程為.

因此,關(guān)于的回歸方程為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】古希臘畢達哥拉斯學派的數(shù)學家研究過各種多邊形數(shù),如三角形數(shù)1,3,6,10,…,第n個三角形數(shù)為 .記第n個k邊形數(shù)為N(n,k)(k≥3),以下列出了部分k邊形數(shù)中第n個數(shù)的表達式:
三角形數(shù)
正方形數(shù)N(n,4)=n2 ,
五邊形數(shù)
六邊形數(shù)N(n,6)=2n2﹣n,

可以推測N(n,k)的表達式,由此計算N(10,24)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C的頂點為原點,其焦點F(0,c)(c>0)到直線l:x﹣y﹣2=0的距離為 ,設(shè)P為直線l上的點,過點P作拋物線C的兩條切線PA,PB,其中A,B為切點.
(1)求拋物線C的方程;
(2)當點P(x0 , y0)為直線l上的定點時,求直線AB的方程;
(3)當點P在直線l上移動時,求|AF||BF|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列的前項和為,對任意,點都在函數(shù) 的圖象上.

1)求數(shù)列的通項公式;

2)若數(shù)列,求數(shù)列的前項和;

3)已知數(shù)列滿足,若對任意,存在使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知點D在BC邊上,AD⊥AC,sin∠BAC= ,AB=3 ,AD=3,則BD的長為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.

(1)若A∩B={2},求實數(shù)a的值;

(2)若A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象如圖所示,則下列說法正確的是( )

A. 函數(shù)的周期為

B. 函數(shù)上單調(diào)遞增

C. 函數(shù)的圖象關(guān)于點對稱

D. 把函數(shù)的圖象向右平移個單位,所得圖象對應的函數(shù)為奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側(cè)棱平面,為等腰直角三角形,,且分別是的中點.

)求證:平面;

)求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的三個頂點為, 的中點.求:

(1) 所在直線的方程;

(2) 邊上中線所在直線的方程;

(3) 邊上的垂直平分線的方程.

查看答案和解析>>

同步練習冊答案