13.已知矩陣$[\begin{array}{l}{a}&{3}\\{1}&{a}\end{array}]$的逆矩陣是$[\begin{array}{l}{a}&{-3}\\{-1}&{a}\end{array}]$,則正實(shí)數(shù)a=2.

分析 由求得丨A丨=a2-3,由A-1=$\frac{1}{丨A丨}$×A*,求得A-1,根據(jù)矩陣相等求得a的值.

解答 解:設(shè)A=$[\begin{array}{l}{a}&{3}\\{1}&{a}\end{array}]$,則丨A丨=a2-3,
則A的逆矩陣為:$[\begin{array}{l}{\frac{a}{{a}^{2}-3}}&{-\frac{3}{{a}^{2}-3}}\\{-\frac{1}{{a}^{2}-3}}&{\frac{a}{{a}^{2}-3}}\end{array}]$,
∴$[\begin{array}{l}{\frac{a}{{a}^{2}-3}}&{-\frac{3}{{a}^{2}-3}}\\{-\frac{1}{{a}^{2}-3}}&{\frac{a}{{a}^{2}-3}}\end{array}]$=$[\begin{array}{l}{a}&{-3}\\{-1}&{a}\end{array}]$,
解得:a=±2,
由a>0,a=2,
故答案為:2.

點(diǎn)評(píng) 本題考查逆矩陣的意義,考查求逆矩陣的求法,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.極坐標(biāo)方程ρcos(θ+$\frac{π}{3}$)=7與方程2ρsin(θ-$\frac{π}{6}$)=29的兩圖形的位置關(guān)系為( 。
A.平行B.垂直C.斜交D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知集合A={a,a+d,a+2d},B={a,aq,aq2}(a為已知常量)并且A=B,求d、q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.直線x+y=k(k>0)與圓x2+y2=4交于A,B兩點(diǎn),若|$\overrightarrow{AB}$|=|$\overrightarrow{OA}$+$\overrightarrow{OB}$|(O為原點(diǎn)),那么( 。
A.k=2B.k=2$\sqrt{2}$C.k=$\sqrt{2}$D.k=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知A(0,2),圓C:(x-a)2+y2=1.
(1)當(dāng)a=1時(shí),求直線2x-y-1=0被圓C截得的弦長(zhǎng);
(2)若圓C上存在點(diǎn)M,滿足條件|MA|=3,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=|2x-a|+a.
(I)當(dāng)a=2時(shí),求不等式f(x)≤4的解集;
(II)設(shè)函數(shù)g(x)=|2x-1|.當(dāng)x∈R時(shí),f(x)+g(x)≥2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}滿足a1=1,an=a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3+…+$\frac{1}{n-1}$an-1(n>1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若an=1008,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=sinxcos($\frac{3}{2}$π+x)+$\sqrt{3}$cosxsin(π+x)+sin($\frac{π}{2}$+x)cosx.
(1)求f(x)的最小正周期;
(2)當(dāng)x為何值時(shí),f(x)有最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.極坐標(biāo)系中,曲線C1:ρ=$\frac{1}{co{s}^{2}θ}$與曲線C2:ρ=4sin2θ的交點(diǎn)到極點(diǎn)O的距離為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案