【題目】如圖,在四棱錐中,側(cè)面底面,側(cè)棱,底面是直角梯形,其中,,,.
(1)求證:平面平面.
(2)試問在棱上是否存在點,使得面面,若存在,試指出點的位置并證明;若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市預(yù)測2000年到2004年人口總數(shù)與年份的關(guān)系如下表所示
年份200x(年) | 0 | 1 | 2 | 3 | 4 |
人口數(shù)y(十)萬 | 5 | 7 | 8 | 11 | 19 |
(1)請根據(jù)上表提供的數(shù)據(jù),計算,用最小二乘法求出關(guān)于的線性回歸方程
(2) 據(jù)此估計2005年該城市人口總數(shù)。
(參考數(shù)值:0×5+1×7+2×8+3×11+4×19=132,
參考公式:用最小二乘法求線性回歸方程系數(shù)公式)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的圖像在點處的切線方程;
(2)若函數(shù)有兩個極值點,且,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個不同的零點,求實數(shù)的取值范圍;
(3)在(2)的條件下,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區(qū)間[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐PABC中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N為PC的中點.
(Ⅰ)證明MN∥平面PAB;
(Ⅱ)求直線AN與平面PMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機構(gòu)認(rèn)為該事件在一段時間沒有發(fā)生在規(guī)模群體感染的標(biāo)志為“連續(xù)10天,每天新增疑似病例不超過7人”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是
A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0
C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y= 4cos2x+4sinxcosx-2,(x∈R)
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的最大值及其相對應(yīng)的x值;
(3)寫出函數(shù)的單調(diào)增區(qū)間;
(4)寫出函數(shù)的對稱軸
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com