精英家教網 > 高中數學 > 題目詳情
6.(1)已知數列{an}:a1=1,an+1+an=4,求數列{an}的通項公式;
(2)求函數$f(x)=\sqrt{1-x}+\sqrt{x}$的值域.

分析 (1)根據關系式,構造新數列,an+1+an=4變形為an+1-2=-(an-2),令bn=an-2,那么bn+1=an+1-2,轉化為等比數列求解.
(2)求出定義域,利用兩邊平方法,轉化為二次函數求值域.

解答 解:(1)由題意:數列{an}:a1=1,an+1+an=4變形為an+1-2=-(an-2),令bn=an-2,則b1=-1,bn+1=an+1-2,那么:$\frac{_{n+1}}{_{n}}=-1=q$(等比數列),首項b1=-1,
∴$_{n}=(-1)^{n}$,
故得:${a}_{n}=_{n}+2=2+(-1)^{n}$
所以數列{an}的通項公式為:2+(-1)n
(2)函數$f(x)=\sqrt{1-x}+\sqrt{x}$,其定義域為{x|0≤x≤1}.
∵f(x)>0,
兩邊平方,可得:f2(x)=1+2$\sqrt{x-{x}^{2}}$,
∵x-x2在0≤x≤1的值域為[0,$\frac{1}{4}$],
那么:(2$\sqrt{x-{x}^{2}}$)∈[0,1],
∴f2(x)∈[1,2],
∴f(x)∈[1,$\sqrt{2}$].
所以函數$f(x)=\sqrt{1-x}+\sqrt{x}$的值域為$[{1,\sqrt{2}}]$;

點評 本題考查了數列的通項公式的求法,利用構造思想,轉化為等比數列求解.考查了函數的值域的求法,利用了平方法轉化為二次函數問題求解.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

9.已知直線y=kx+1,橢圓$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1,試判斷直線與橢圓的位置關系( 。
A.相切B.相離C.相交D.相切或相交

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知向量$\overrightarrow{a},\overrightarrow,\overrightarrow{c}$,滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\overrightarrow{a}•\overrightarrow$=3,若($\overrightarrow{c}$-2$\overrightarrow{a}$)•($\overrightarrow{c}$-$\frac{2}{3}$$\overrightarrow$)=0,則|$\overrightarrow-\overrightarrow{c}$|的最小值是( 。
A.2-$\sqrt{3}$B.2+$\sqrt{3}$C.1D.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.在△ABC中,D是邊BC上一點,且$\overrightarrow{BD}=3\overrightarrow{DC},P$是線段AD上一個動點,若$\overrightarrow{|{AD}|}=2$,則$\overrightarrow{PA}•({\overrightarrow{PB}+3\overrightarrow{PC}})$的最小值是( 。
A.-8B.-4C.-2D.0

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知函數f(x)=2sinxcosx+cos2x-sin2x(x∈R).
(1)求f(x)的最小正周期和最大值;
(2)若θ為銳角,且$f({θ+\frac{π}{8}})=\frac{{\sqrt{2}}}{3}$,求tan2θ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知(3+x)10=a0+a1(1+x)+a2(1+x)2+…+a10(1+x)10,則a9=( 。
A.20B.21C.31D.32

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.在下列函數中,圖象關于原點對稱且對任意x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>0的是(  )
A.y=xsinxB.y=$\frac{{e}^{x}+{e}^{-x}}{2}$C.y=ln$\frac{1-x}{1+x}$D.y=x3+x

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.下列命題正確的是( 。
A.單位向量都相等
B.長度相等且方向相反的兩個向量不一定是共線向量
C.若$\overrightarrow a$,$\overrightarrow b$滿足$|{\overrightarrow a}|$>$|{\overrightarrow b}|$且$\overrightarrow a$與$\overrightarrow b$同向,則$\overrightarrow a$>$\overrightarrow b$
D.對于任意向量$\overrightarrow a$,$\overrightarrow b$,必有$|{\overrightarrow a+\overrightarrow b}|$≤$|{\overrightarrow a}|$+$|{\overrightarrow b}|$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.八個人排成一排.其中甲、乙、丙3人中有兩人相鄰.但這三人不同時相鄰的排法有多少種?

查看答案和解析>>

同步練習冊答案