10.已知向量$\overrightarrow{a},\overrightarrow,\overrightarrow{c}$,滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\overrightarrow{a}•\overrightarrow$=3,若($\overrightarrow{c}$-2$\overrightarrow{a}$)•($\overrightarrow{c}$-$\frac{2}{3}$$\overrightarrow$)=0,則|$\overrightarrow-\overrightarrow{c}$|的最小值是( 。
A.2-$\sqrt{3}$B.2+$\sqrt{3}$C.1D.2

分析 由題意設(shè)$\overrightarrow{a}=(1,\sqrt{3}),\overrightarrow=(3,0)$,再設(shè)$\overrightarrow{c}=(x,y)$,這樣根據(jù)$(\overrightarrow{c}-2\overrightarrow{a})•(\overrightarrow{c}-\frac{2}{3}\overrightarrow)=0$即可得出$\overrightarrow{c}$終點(diǎn)的軌跡,而數(shù)形結(jié)合即可求出$|\overrightarrow-\overrightarrow{c}|$的最小值.

解答 解:根據(jù)條件,設(shè)$\overrightarrow{a}=(1,\sqrt{3}),\overrightarrow=(3,0)$,設(shè)$\overrightarrow{c}=(x,y)$,則:
$(\overrightarrow{c}-2\overrightarrow{a})•(\overrightarrow{c}-\frac{2}{3}\overrightarrow)$=$(x-2,y-2\sqrt{3})•(x-2,y)$=0;
∴$(x-2)^{2}+(y-\sqrt{3})=3$;
∴$\overrightarrow{c}$的終點(diǎn)在以$(2,\sqrt{3})$為圓心,$\sqrt{3}$為半徑的圓上,如圖所示:
∴|$\overrightarrow-\overrightarrow{c}$|的最小值為:$\sqrt{(2-3)^{2}+(\sqrt{3}-0)^{2}}-\sqrt{3}=2-\sqrt{3}$.
故選A.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積的坐標(biāo)運(yùn)算,引入坐標(biāo)解決向量問(wèn)題的方法,以及數(shù)形結(jié)合的解題思想方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)集合A={x|-4<x<2},B={x|x<1},則如圖中陰影部分表示的集合為[1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知方程ax2+x+b=0.
(1)若方程的解集為{1},求實(shí)數(shù)a,b的值;
(2)若方程的解集為{1,3},求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)A={a|f(x)=2x2-3ax+13是(3,+∞)上的增函數(shù)},B={y|y=$\frac{5}{x+2}$,x∈[-1,3]},則∁R(A∩B)=(-∞,1)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.解方程2•4x-3•2x-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)是周期為2的奇函數(shù),當(dāng)x∈[0,1),f(x)=log2(x+1),則f($\frac{2015}{4}$)+log25=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{lnx}{a^2}-x$.
(I)若曲線f(x)在(1,f(1))處的切線與x軸平行,求函數(shù)f(x)的單調(diào)區(qū)間;
(II)當(dāng)f(x)的最大值大于1-$\frac{2}{a^2}$時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(1)已知數(shù)列{an}:a1=1,an+1+an=4,求數(shù)列{an}的通項(xiàng)公式;
(2)求函數(shù)$f(x)=\sqrt{1-x}+\sqrt{x}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如圖,已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,|F1F2|=2$\sqrt{3}$,P是雙曲線右支上的一點(diǎn),F(xiàn)2P與y軸交于點(diǎn)A,△APF1的內(nèi)切圓左邊PF1上的切點(diǎn)為Q,若|PQ|=1,則雙曲線的離心率是(  )
A.2B.3C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案