如圖,在平面直角坐標(biāo)系xOy中,圓C:(x+1)2+y2=16,點F(1,0),E是圓C上的一個動點,EF的垂直平分線PQ與CE交于點B,與EF交于點D.
(1)求點B的軌跡方程;
(2)當(dāng)點D位于y軸的正半軸上時,求直線PQ的方程;
(3)若G是圓C上的另一個動點,且滿足FG⊥FE,記線段EG的中點為M,試判斷線段OM的長度是否為定值?若是,求出該定值;若不是,說明理由.
(1)=1(2)x-2y+4=0(3)
【解析】(1)連結(jié)BF,由已知BF=BE,所以BC+BF=BC+BE=CE=4,
所以點B的軌跡是以C、F為焦點,長軸為4的橢圓,所以B點的軌跡方程為=1.
(2)當(dāng)點D位于y軸的正半軸上時,因為D是線段EF的中點,O為線段CF的中點,所以CE∥OD,且CE=2OD,所以E、D的坐標(biāo)分別為(-1,4)和(0,2).
因為PQ是線段EF的垂直平分線,所以直線PQ的方程為y=x+2,即直線PQ的方程為x-2y+4=0.
(3)設(shè)點E、G的坐標(biāo)分別為(x1,y1)和(x2,y2),則點M的坐標(biāo)為,因為點E、G均在圓C上,且FG⊥FE,所以(x1+1)2+=16,①,(x2+1)2+=16,②
(x1-1)(x2-1)+y1y2=0,③
所以+=15-2x1,+=15-2x2,x1x2+y1y2=x1+x2-1.所以MO2=[(x1+x2)2+(y1+y2)2]=·[(+)+(+)+2(x1x2+y1y2)]=[15-2x1+15-2x2+2(x1+x2-1)]=7,即M點到坐標(biāo)原點O的距離為定值,且定值為.
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第4課時練習(xí)卷(解析版) 題型:填空題
過點P(1,1)的直線,將圓形區(qū)域{(x,y)|x2+y2≤4}分為兩部分,使得這兩部分的面積之差最大,則該直線的方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第11課時練習(xí)卷(解析版) 題型:解答題
已知橢圓C的方程為=1(a>b>0),雙曲線=1的兩條漸近線為l1、l2,過橢圓C的右焦點F作直線l,使l⊥l1.又l與l2交于P點,設(shè)l與橢圓C的兩個交點由上至下依次為A、B(如圖).
(1)當(dāng)l1與l2夾角為60°,雙曲線的焦距為4時,求橢圓C的方程;
(2)當(dāng)=λ,求λ的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第11課時練習(xí)卷(解析版) 題型:解答題
如圖,橢圓C:=1(a>b>0)的離心率為,其左焦點到點P(2,1)的距離為.不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分.
(1)求橢圓C的方程;
(2)求△ABP面積取最大值時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第10課時練習(xí)卷(解析版) 題型:解答題
已知橢圓=1(a>b>0)的離心率為,短軸的一個端點為M(0,1),直線l:y=kx-與橢圓相交于不同的兩點A、B.
(1)若AB=,求k的值;
(2)求證:不論k取何值,以AB為直徑的圓恒過點M.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第10課時練習(xí)卷(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,已知橢圓=1的左、右頂點為A、B,右焦點為F.設(shè)過點T(t,m)的直線TA、TB與橢圓分別交于點M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)設(shè)動點P滿足PF2-PB2=4,求點P的軌跡;
(2)設(shè)x1=2,x2=,求點T的坐標(biāo);
(3)設(shè)t=9,求證:直線MN必過x軸上的一定點(其坐標(biāo)與m無關(guān)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點引領(lǐng)+技巧點撥第九章第10課時練習(xí)卷(解析版) 題型:填空題
已知雙曲線方程是x2-=1,過定點P(2,1)作直線交雙曲線于P1、P2兩點,并使P(2,1)為P1P2的中點,則此直線方程是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年陜西西工大附中高三上學(xué)期第四次適應(yīng)性訓(xùn)練理數(shù)學(xué)卷(解析版) 題型:選擇題
如圖所示,在中,,,高,在內(nèi)作射線交于點,則的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年陜西西安鐵一中國際合作學(xué)校高三下第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
已知函數(shù)在區(qū)間是減函數(shù),則實數(shù)的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com