【題目】已知函數(shù)的部分圖象如圖所示,分別是圖象的最高點與相鄰的最低點,且,為坐標(biāo)原點.

(1)求函數(shù)的解析式;

(2)將函數(shù)的圖象向左平移1個單位后得到函數(shù)的圖象,求函數(shù)的值域.

【答案】(1);(2)

【解析】

1)根據(jù)部分函數(shù)圖象,可先判斷出最高點的縱坐標(biāo),可得.再根據(jù)向量的坐標(biāo)運算及模的表示,求得周期.再將最高點代入求得,即可得解析式.

2)根據(jù)三角函數(shù)平移變換,求得的解析式.結(jié)合余弦函數(shù)的圖象與性質(zhì),即可求得值域.

1)因為為最高點且

點的坐標(biāo)為.所以

設(shè),所以

可知,解得

所以,解得

由周期公式可知

所以

因為為過點,代入可得

,

所以解得

2)由(1)可知

將函數(shù)的圖象向左平移1個單位后可得

因為

所以由正弦函數(shù)的圖象與性質(zhì)可知

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)對任意實數(shù),都滿足,且,,當(dāng)時,.

(1)判斷函數(shù)的奇偶性;

(2)判斷函數(shù)上的單調(diào)性,并給出證明;

(3)若,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資公司計劃在甲、乙兩個互聯(lián)網(wǎng)創(chuàng)新項目上共投資1200萬元,每個項目至少要投資300萬元.根據(jù)市場分析預(yù)測:甲項目的收益與投入滿足,乙項目的收益與投入滿足.設(shè)甲項目的投入為.

1)求兩個項目的總收益關(guān)于的函數(shù).

2)如何安排甲、乙兩個項目的投資,才能使總收益最大?最大總收益為多少?(注:收益與投入的單位都為“萬元”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某觀光海域AB段的長度為3百公里,一超級快艇在AB段航行,經(jīng)過多次試驗得到其每小時航行費用Q(單位:萬元)與速度v(單位:百公里/小時)(0≤v≤3)的以下數(shù)據(jù):

0

1

2

3

0

0.7

1.6

3.3

為描述該超級快艇每小時航行費用Q與速度v的關(guān)系,現(xiàn)有以下三種函數(shù)模型供選擇:Qav3bv2cv,Q=0.5va,Qklogavb

(1)試從中確定最符合實際的函數(shù)模型,并求出相應(yīng)的函數(shù)解析式;

(2)該超級快艇應(yīng)以多大速度航行才能使AB段的航行費用最少?并求出最少航行費用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)綠色出行,前段時間大連市在推出“共享單車”后,又推出“新能源分時租賃汽車”,其中一款新能源分時租賃汽車,每次租車收費的標(biāo)準(zhǔn)由兩部分組成:①根據(jù)行駛里程按1元/公里計費;②行駛時間不超過40分鐘時,按0.12元/分鐘計費:超出部分按0.20元/分鐘計費,己知張先生家離上班地點15公里,每天租用該款汽車上、下班各一次.由于堵車、紅路燈等因素,每次路上開車花費的時間(分鐘)是一個隨機變量.現(xiàn)統(tǒng)計了100次路上開車花費時間,在各時間段內(nèi)的頻數(shù)分布情況如下表所示:

時間(分鐘)

頻數(shù)

4

36

40

20

將各時間段發(fā)生的頻率視為概率,每次路上開車花費的時間視為用車的時間,范圍為分鐘.

(1)寫出張先生一次租車費用(元)與用車時間(分鐘)的函數(shù)關(guān)系式:

(2)若公司每月給900元的車補,請估計張先生每月(按24天計算)的車補是否足夠上下班租用新能源分時租賃汽車?并說明理由.(同一時段,用該區(qū)間的中點值作代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且滿足,當(dāng)時,,則函數(shù)在區(qū)間上所有零點的個數(shù)為( )

A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新能源汽車包括純電動汽車、增程式電動汽車、混合動力汽車、燃料電池電動汽車、氫發(fā)動機汽車、其他新能源汽車等.它是未來汽車的發(fā)展方向.一個新能源汽車制造廠引進了一條新能源汽車整車裝配流水線,這條流水線生產(chǎn)的新能源汽車數(shù)量(輛)與創(chuàng)造的價值(萬元)之間滿足二次函數(shù)關(guān)系.已知產(chǎn)量為0時,創(chuàng)造的價值也為0;當(dāng)產(chǎn)量為40000輛時,創(chuàng)造的價值達到最大6000萬元.若這家工廠希望利用這條流水線創(chuàng)收達到5625萬元,則它可能生產(chǎn)的新能源汽車數(shù)量是___________輛.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且上的最大值為

求函數(shù)的解析式;

判斷內(nèi)的零點的個數(shù),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱函數(shù)的一個上界.已知函數(shù), .

(1)若函數(shù)為奇函數(shù),求實數(shù)的值;

(2)在第(1)的條件下,求函數(shù)在區(qū)間上的所有上界構(gòu)成的集合;

(3)若函數(shù)上是以3為上界的有界函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案