1.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線方程為y=±$\frac{1}{2}$x,則該雙曲線的離心率為$\frac{{\sqrt{5}}}{2}$.

分析 根據(jù)雙曲線的漸近線方程,得到a,b的關(guān)系結(jié)合離心率的定義進(jìn)行求解即可.

解答 解:由雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1知雙曲線的焦點(diǎn)在x軸,
則兩條漸近線方程為y=±$\frac{a}$x,
∵雙曲線的漸近線方程為y=±$\frac{1}{2}$x,
∴$\frac{a}$=$\frac{1}{2}$,
則e=$\frac{c}{a}$=$\sqrt{\frac{{a}^{2}+^{2}}{{a}^{2}}}$=$\sqrt{1+\frac{1}{4}}$=$\frac{{\sqrt{5}}}{2}$.
故答案為:$\frac{{\sqrt{5}}}{2}$.

點(diǎn)評 本題主要考查雙曲線離心率的計算,根據(jù)雙曲線漸近線得到a,b的關(guān)系是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.過P(a,b)向圓(x-2)2+(y-3)2=1引切線PT,T為切點(diǎn),若|PT|=|PO|(O為坐標(biāo)原點(diǎn)),則切線|PT|的最小值為$\frac{{6\sqrt{13}}}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.?dāng)?shù)列{an}的通項公式an=n•sin$\frac{nπ}{2}$+1,前n項和為Sn,則S2015=(  )
A.504B.1006C.1007D.1008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}中,a1=1,an+1=$\frac{\sqrt{2}{a}_{n}}{\sqrt{{{a}_{n}}^{2}+2}}$(n∈N*
(1)證明{$\frac{1}{{{a}_{n}}^{2}}$}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{{a}_{n}}^{2}}$,數(shù)列{bn}的前n項和為Sn,已知存在正整數(shù)m,使得$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$<m對n∈N+恒成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$2sin(2x+\frac{π}{6})$
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{2}$]上的值域,并求f(x)取得最大值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知$f(x)=x+\frac{1}{x}$
(1)求函數(shù)在$x=\frac{1}{2}$處的切線方程.
(2)求函數(shù)在x=x0處的切線與直線y=x和y軸圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+4x,x≤0\\ xlnx,x>0\end{array}\right.$,g(x)=kx-1,若方程f(x)-g(x)=0在x∈(-2,2)有三個實根,則實數(shù)k的取值范圍為( 。
A.$(1,ln2\sqrt{e})$B.$(ln2\sqrt{e},\frac{3}{2})$C.$(\frac{3}{2},2)$D.$(1,ln2\sqrt{e})∪(\frac{3}{2},2)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知二項式${(ax+\frac{1}{x})^4}$的展開式中x2項的系數(shù)為32,則實數(shù)a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=$\left\{\begin{array}{l}sinπx(x<0)\\ f(x-1)-1(x>0)\end{array}$,
(1)求$f(-\frac{1}{4})$的值;  
(2)求$f(\frac{5}{6})$的值.

查看答案和解析>>

同步練習(xí)冊答案