16.已知函數(shù)f(x)=$2sin(2x+\frac{π}{6})$
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{2}$]上的值域,并求f(x)取得最大值時(shí)x的值.

分析 (1)利用函數(shù)y=Asin(ωx+φ)的周期為$\frac{2π}{ω}$,得出結(jié)論.
(2)利用正弦函數(shù)的定義域和值域,求得f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{2}$]上的值域,并求f(x)取得最大值時(shí)x的值.

解答 解(1)函數(shù)f(x))=$2sin(2x+\frac{π}{6})$ 的最小正周期T=$\frac{2π}{2}$=π.
(2)由-$\frac{π}{6}$≤x≤$\frac{π}{2}$,知-$\frac{π}{3}$≤2x≤π,故$-\frac{π}{6}≤2x+\frac{π}{6}≤\frac{7π}{6}$,∴$-\frac{1}{2}≤sin(2x+\frac{π}{6})≤1$,故$-1≤2sin(2x+\frac{π}{6})≤2$,
∴f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{2}$]上的值域[-1,2].
當(dāng) 2x+$\frac{π}{6}$=$\frac{π}{2}$時(shí),即 x=$\frac{π}{6}$時(shí),f(x)取得最大值為2.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的周期性,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.某校開(kāi)展“向感動(dòng)中國(guó)2015年度人物學(xué)習(xí)”主題墻報(bào)評(píng)比,9位評(píng)委為A班的墻報(bào),給出的分?jǐn)?shù)如莖葉圖所示.記分員在去掉一個(gè)最高分和一個(gè)最低分后,算得平均分為91,復(fù)核員在復(fù)核時(shí),發(fā)現(xiàn)有一個(gè)數(shù)字(莖葉圖中的x)無(wú)法看清,若記分員計(jì)算無(wú)誤,則數(shù)字x應(yīng)該是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=xlnx+ax2-(2a+l)x+1,其中a>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)對(duì)于任意的x∈[a,+∞),都有f(x)≥a3-a-$\frac{1}{8}$,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知a∈R,若$\frac{1+ai}{2+i}$為實(shí)數(shù),則a=(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,四邊形EFGH為空間四邊形ABCD的一個(gè)截面,若截面為平行四邊形,
(1)證明EH∥平面BCD
(2)求證:AB∥平面EFGH,
(3)若AB=6,CD=9,求四邊形EFGH周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的漸近線方程為y=±$\frac{1}{2}$x,則該雙曲線的離心率為$\frac{{\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知復(fù)數(shù)z=$\frac{a+i}{2}$(a∈R)且z的實(shí)部與虛部互為相反數(shù),則a的值為( 。
A.1B.aC.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.(1)命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”.
(2)“x=1”是“x2-4x+3=0”的充要條件;
(3)若p∧q為假命題,則p、q均為假命題.
(4)對(duì)于命題p:?x0∈R,x${\;}_{0}^{2}$+2x0+2≤0,則¬p:?x∈R,x2+2x+2>0.
上面四個(gè)命題中正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過(guò)點(diǎn)A(0,-1),且離心率為$\frac{\sqrt{2}}{2}$.
(1)求a的值;
(2)經(jīng)過(guò)點(diǎn)(1,1),且斜率為k的直線與橢圓E交于不同的兩點(diǎn)P,Q(均異于點(diǎn)A),證明:直線AP與AQ的斜率之和為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案