8.過(guò)x軸上一定點(diǎn)M作直線l與拋物線y2=4x交于P,Q兩點(diǎn),若$\overrightarrow{OP}•\overrightarrow{OQ}=5$,則M點(diǎn)的坐標(biāo)為(5,0)或(-1,0).

分析 設(shè)M(t,0),P(x1,y1),Q(x2,y2),設(shè)直線l的方程為:my+t=x,與拋物線方程聯(lián)立化為:y2-4my-4t=0,利用根與系數(shù)的關(guān)系、數(shù)量積運(yùn)算性質(zhì)即可得出.

解答 解:設(shè)M(t,0),P(x1,y1),Q(x2,y2),設(shè)直線l的方程為:my+t=x,
聯(lián)立$\left\{\begin{array}{l}{my+t=x}\\{{y}^{2}=4x}\end{array}\right.$,化為:y2-4my-4t=0,
△=16m2+16t>0,
∴y1+y2=4m,y1y2=-4t.
∴$\overrightarrow{OP}•\overrightarrow{OQ}=5$=x1x2+y1y2=(my1+t)(my2+t)+y1y2=(m2+1)y1y2+mt(y1+y2)+t2=-4t(m2+1)+4m2t+t2,
∴t2-4t-5=0,
解得t=5或-1.滿足△>0.
∴M(5,0)或(-1,0).
故答案為:(5,0)或(-1,0).

點(diǎn)評(píng) 本題考查了拋物線的標(biāo)準(zhǔn)方程及其性質(zhì)、數(shù)量積運(yùn)算性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)y=sin($\frac{1}{3}$x+$\frac{π}{4}$),x∈R的最小正周期為( 。
A.B.πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知a≠0,函數(shù)f(x)=ax(x-1)2(x∈R)有極大值4.
(1)求實(shí)數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知直線l:y=kx+b與拋物線x2=2py(常數(shù)p>0)相交于不同的兩點(diǎn)A、B,線段AB的中點(diǎn)為D,與直線l:y=kx+b平行的切線的切點(diǎn)為C.分別過(guò)A、B作拋物線的切線交于點(diǎn)E,則關(guān)于點(diǎn)C、D、E三點(diǎn)橫坐標(biāo)xc、xD,xE的表述正確的是( 。
A.xD<xC<xEB.xC=xD>xEC.xD=xc<xED.xC=xD=xE

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知拋物線y2=8x上的點(diǎn)P到雙曲線y2-4x2=4b2的上焦點(diǎn)的距離與到直線x=-2的距離之和的最小值為3,則該雙曲線的方程為( 。
A.$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{3}$=1B.y2-$\frac{{x}^{2}}{4}$=1C.$\frac{{y}^{2}}{4}$-x2=1D.$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{2}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.學(xué)校對(duì)高二、高三年級(jí)的1000名男生的體重進(jìn)行調(diào)查,設(shè)每個(gè)男生的體重為x公斤,調(diào)查所得數(shù)據(jù)用如圖所示的程序框圖處理,若輸出的結(jié)果是380,則體重在60公斤(包括60公斤)以內(nèi)的男生的頻率是( 。
A.380B.620C.$\frac{19}{50}$D.$\frac{31}{50}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)函數(shù)f(x)=ex-lnx.
(1)求證:函數(shù)f(x)有且只有一個(gè)極值點(diǎn)x0;
(2)求函數(shù)f(x)的極值點(diǎn)x0的近似值x′,使得|x′-x0|<0.1;
(3)求證:f(x)>2.3對(duì)x∈(0,+∞)恒成立.
(參考數(shù)據(jù):e≈2.718,ln2≈0.693,ln3≈1.099,ln5≈1.609,ln7≈1.946).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知拋物線C:y2=2px(p>0)的準(zhǔn)線方程為x=-2,則拋物線C的方程為y2=8x; 若某雙曲線的一個(gè)焦點(diǎn)與拋物線C的焦點(diǎn)重合,且漸近線方程為y=±$\sqrt{3}$x,則此雙曲線的方程為${x}^{2}-\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.過(guò)原點(diǎn)的直線與雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)交于M,N兩點(diǎn),P是雙曲線上異于M,N的一點(diǎn),若直線MP與直線NP的斜率都存在且乘積為$\frac{5}{4}$,則雙曲線的離心率為$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案