20.已知函數(shù)f(x)=x+sinx(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,則當y≥1時,$\frac{x+y+1}{x+1}$的取值范圍是(  )
A.[$\frac{5}{4}$,$\frac{7}{4}$]B.[0,$\frac{7}{4}$]C.[$\frac{5}{4}$,$\frac{7}{3}$]D.[1,$\frac{7}{3}$]

分析 判斷函數(shù)f(x)的奇偶性和單調(diào)性,將不等式進行轉(zhuǎn)化,利用直線和圓的位置關(guān)系,結(jié)合數(shù)形結(jié)合和$\frac{y}{x+1}$的幾何意義即可得到結(jié)論.

解答 解:∵f(x)=x+sinx(x∈R),
∴f(-x)=-x-sinx=-(x+sinx)=-f(x),
即f(x)=x+sinx(x∈R)是奇函數(shù).
∵f(y2-2y+3)+f(x2-4x+1)≤0,
∴f(y2-2y+3)≤-f(x2-4x+1)=f[-(x2-4x+1)],
由f′(x)=1+cosx≥0,∴函數(shù)單調(diào)遞增.
∴(y2-2y+3)≤-(x2-4x+1),
即(y2-2y+3)+(x2-4x+1)≤0,
∴(y-1)2+(x-2)2≤1,∵當y≥1時,$\frac{x+y+1}{x+1}$=1+$\frac{y-0}{x+1}$,
∴不等式對應(yīng)的平面區(qū)域為圓心為(2,1),半徑為1的圓的上半部分.
而$\frac{y}{x+1}$的幾何意義為動點P(x,y)到定點A(-1,0)的斜率的取值范圍.
設(shè)k=$\frac{y}{x+1}$,(k>0),則y=kx+k,即kx-y+k=0.
當直線和圓相切時,圓心到直線的距離d=$\frac{|2k-1+k|}{\sqrt{{1+k}^{2}}}$=$\frac{|3k-1|}{\sqrt{{1+k}^{2}}}$=1
即8k2-6k=0,解得k=$\frac{3}{4}$.此時直線斜率最大.
當直線kx-y+k=0經(jīng)過點B(3,1)時,直線斜率最小,
此時3k-1+k=0,即4k=1,解得k=$\frac{1}{4}$,
∴$\frac{1}{4}$≤k≤$\frac{3}{4}$,故 $\frac{x+y+1}{x+1}$=1+$\frac{y-0}{x+1}$=1+k的取值范圍是[$\frac{5}{4}$,$\frac{7}{4}$].
故選:A

點評 本題主要考查直線和圓的位置關(guān)系的應(yīng)用,函數(shù)奇偶性和單調(diào)性的判斷以及直線斜率的取值范圍,綜合性較強,運算量較大,利用數(shù)形結(jié)合是解決本題的基本思想,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.(Ⅰ)已知y=$\frac{{1-{x^2}}}{e^x}$,求y′.
(Ⅱ)已知y=x2sin(3x+π),求y′.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.從6個盒子中選出3個來裝東西,且甲、乙兩個盒子至少有一個被選中的情況有( 。
A.16種B.18種C.22種D.37種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)f(x)=$\left\{{\begin{array}{l}{{2^{x-1}}+x,x≤0}\\{-1+lnx,x>0}\end{array}}$的零點個數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設(shè)命題p:“方程x2+mx+1=0有兩個實數(shù)根”;命題q:“?x∈R,4x2+4(m-2)x+1≠0”,若p∧q為假,¬q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知角α終邊上一點P(-4,3),則sin($\frac{π}{2}$+α)的值為( 。
A.$-\frac{4}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.以下四個對應(yīng):
(1)A=N+,B=N+,f:x→|x-3|
(2)A=Z,B=Q,f:x→$\frac{2}{x}$
(3)A=N+,B=R,f:x→x的平方根; 
(4)A=N,B={-1,1,2,-2},f:x→(-1)x
其中能構(gòu)成從A到B的映射的有( 。﹤.
A..1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在△ABC中,角A、B、C所對的邊分別為a、b、c,滿足a=2sinA,cosC=-$\frac{1}{2}$
(I)求c邊的大小.
( II)當C在圓O的劣弧$\widehat{AB}$上移動到何處時,△ABC的面積最大,求此時角A的大小,并求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+2,x≤2\\ 2x,x>2\end{array}$,若f(x)>6,則x的取值范圍是(-∞,-2)∪(3,+∞).

查看答案和解析>>

同步練習冊答案