A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
分析 要求該概率即求S△AOC:S△ABC=的比值.由$\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}$=$\overrightarrow{0}$,變形為:3$\overrightarrow{OD}$=$\overrightarrow{AB}$,得到O到AC的距離是E到AC距離的一半,B到AC的距離是O到AC距離的3倍,兩三角形同底,面積之比轉(zhuǎn)化為概率.
解答 解:以$\overrightarrow{OB}$,$\overrightarrow{OC}$為鄰邊作平行四邊形OBDC,則$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{OD}$
∵$\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}$=$\overrightarrow{0}$,
∴3$\overrightarrow{OD}$=$\overrightarrow{AB}$,
作AB的兩個(gè)三等分點(diǎn)E,F(xiàn),則$\overrightarrow{OC}$=$\overrightarrow{BD}$=$\overrightarrow{EO}$,
∴O到AC的距離是E到AC距離的一半,B到AC的距離是O到AC距離的3倍,如圖
∴S△AOC=$\frac{1}{3}$S△ABC.
故△ABC內(nèi)任意投一個(gè)點(diǎn),則該點(diǎn)△OAC內(nèi)的概率為$\frac{1}{3}$,
故選:C.
點(diǎn)評(píng) 本題給出點(diǎn)O滿(mǎn)足的條件,求O點(diǎn)落在△AOC內(nèi)的概率,利用面積比求得;著重考查了平面向量加法法則、向量共線(xiàn)的充要條件和幾何概型等知識(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,0)∪(1,+∞) | B. | (-∞,1)∪(0,1) | C. | (0,1)∪(1,+∞) | D. | (-∞,-1)∪(-1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{1+\sqrt{5}}}{2}$ | B. | $\frac{{1-\sqrt{5}}}{2}$ | C. | $\frac{{-1+\sqrt{5}}}{2}$或$\frac{{-1-\sqrt{5}}}{2}$ | D. | $\frac{{1+\sqrt{5}}}{2}$或$\frac{{1-\sqrt{5}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 16 | B. | 4 | C. | 2$\sqrt{2}$ | D. | 45 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com