分析 (1)當(dāng)n≥2時(shí)通過an+1=3Sn-2與an=3Sn-1-2作差,進(jìn)而整理即得結(jié)論;
(2)通過(1)可知數(shù)列{bn}的通項(xiàng)公式,利用裂項(xiàng)相消法計(jì)算即得結(jié)論.
解答 (1)解:∵an+1=3Sn-2,
∴當(dāng)n≥2時(shí),an=3Sn-1-2,
兩式相減得:an+1-an=3an,即an+1=4an(n≥2),
又∵a1=2,a2=3S1-2=4,
∴數(shù)列{an}的通項(xiàng)公式an=$\left\{\begin{array}{l}{2,}&{n=1}\\{{4}^{n-1},}&{n≥2}\end{array}\right.$;
(2)證明:由(1)可知bn=$\left\{\begin{array}{l}{2,}&{n=1}\\{\frac{1}{n-1},}&{n≥2}\end{array}\right.$,
∵當(dāng)n≥2時(shí),bnbn+1=$\frac{1}{n-1}•\frac{1}{n}$=$\frac{1}{n-1}$-$\frac{1}{n}$,
∴b1b2+b2b3+…+bnbn+1
=2×1+(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n-1}$-$\frac{1}{n}$)
=3-$\frac{1}{n}$
<3.
點(diǎn)評 本題是一道關(guān)于數(shù)列與不等式的綜合題,考查裂項(xiàng)相消法、分類討論的思想,注意解題方法的積累,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{341}{25}$,77] | B. | [$\frac{441}{25}$,81] | C. | [$\sqrt{37}$,77] | D. | [$\frac{1}{5}$,5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
城市 | A | B | C | D | E |
4S店個(gè)數(shù)x | 3 | 4 | 6 | 5 | 2 |
銷量y(臺) | 28 | 29 | 37 | 31 | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 橢圓 | B. | 圓 | C. | 拋物線 | D. | 雙曲線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com