5.在銳角△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知$\sqrt{3}$a=2csinA.
(1)求角C的值;
(2)若c=$\sqrt{7}$,且S△ABC=$\frac{3\sqrt{3}}{2}$,求a+b的值.

分析 (1)根據(jù)正弦定理和特殊角的三角函數(shù)值即可求出;
(2)由三角形得面積公式和余弦定理即可求出.

解答 解:(1)由$\sqrt{3}$a=2csinA及正弦定理,得$\frac{a}{c}$=$\frac{2sinA}{\sqrt{3}}$=$\frac{sinA}{sinC}$.
∵sinA≠0,∴sinC=$\frac{\sqrt{3}}{2}$.
又∵△ABC是銳角三角形,∴C=$\frac{π}{3}$.
(2)c=$\sqrt{7}$,C=$\frac{π}{3}$,
由面積公式,得$\frac{1}{2}$absin$\frac{π}{3}$=$\frac{3\sqrt{3}}{2}$,即ab=6.①
由余弦定理,得a2+b2-2abcos$\frac{π}{3}$=7,
即a2+b2-ab=7.②
由②變形得(a+b)2=3ab+7.③
將①代入③得(a+b)2=25,故a+b=5.

點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,三角形面積公式,特殊角的三角函數(shù)值在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在銳角△ABC中,角A,B所對(duì)的邊長(zhǎng)分別為a,b,若2asinB=$\sqrt{3}$b,則角A等于(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,4sin2$\frac{B+C}{2}$-cos2A=$\frac{7}{2}$.
(Ⅰ)求角A的度數(shù);
(Ⅱ)若a=$\sqrt{3}$,b+c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)f(x)=cos $\frac{π}{6}$x,則f(2 014)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)=ax-1+2,a>0 且a≠1,則f(x)必過(guò)定點(diǎn)(1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,右焦點(diǎn)為F,右頂點(diǎn)為E,P為直線x=$\frac{5}{4}$a上的任意一點(diǎn),且($\overrightarrow{PF}$+$\overrightarrow{PE}$)•$\overrightarrow{EF}$=2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)F垂直于x軸的直線AB與橢圓交于A,B兩點(diǎn)(點(diǎn)A在第一象限),動(dòng)直線l與橢圓C交于M,N兩點(diǎn),且M,N位于直線AB的兩側(cè),若始終保持∠MAB=∠NAB,求證:直線MN的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)命題p:若2m+n=2,則雙曲線$\frac{{y}^{2}}{{4}^{m}}$-$\frac{{x}^{2}}{{2}^{n}+5}$=1的焦距的最小值為6,命題q:若一圓柱存在的內(nèi)切球,則此圓柱的表面積與內(nèi)切球的表面積之比恰好等于圓柱的體積與內(nèi)切球的體積之比,那么,下列命題為真命題的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.命題“?x∈R,使得x2+x+1<0”的否定是( 。
A.?x∈R,均有x2+x+1<0B.?x∈R,使得x2+x+1>0
C.?x∈R,使得x2+x+1≥0D.?x∈R,均有x2+x+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知平面向量$\overrightarrow{a}$、$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{a}$⊥($\overrightarrow{a}$-2$\overrightarrow$),則|$\overrightarrow{a}$+$\overrightarrow$|的值為$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案