4.過橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,(a>b>0)的左焦點F1作x軸的垂線交橢圓于點P,F(xiàn)2為右焦點,若∠F1PF2=45°,則橢圓的離心率為( 。
A.2-$\sqrt{2}$B.$\sqrt{2}-1$C.3-2$\sqrt{2}$D.$\sqrt{2}$

分析 把x=-c代入橢圓的方程可得:$\frac{{c}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,可取P$(-c,\frac{^{2}}{a})$,根據(jù)∠F1PF2=45°,可得$\frac{^{2}}{a}$=2c,化簡解出即可得出.

解答 解:F1(-c,0),
把x=-c代入橢圓的方程可得:$\frac{{c}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,解得y=±$\frac{^{2}}{a}$,
取P$(-c,\frac{^{2}}{a})$,∵∠F1PF2=45°,∴$\frac{^{2}}{a}$=2c,∴a2-c2=2ac,化為:e2+2e-1=0,
又0<e<1,可得:e=$\frac{-2+2\sqrt{2}}{2}$=$\sqrt{2}$-1.
故選:B.

點評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、等腰直角三角形的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p和命題q中有且僅有一個真命題,則下列命題中一定為假命題的是( 。
A.p∨qB.¬p∨qC.¬p∧¬qD.p∨¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>b>0)的一條漸近線與橢圓$\frac{x^2}{5}$+y2=1交于P.Q兩點.F為橢圓右焦點,且PF⊥QF,則雙曲線的離心率為( 。
A.$\frac{4}{15}\sqrt{15}$B.$\frac{4}{5}\sqrt{5}$C.$\sqrt{3}-1$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)的定義域為R,若存在常數(shù)m>0,使|f(x)|≤m|x|對一切實數(shù)x均成立,則稱f(x)為F函數(shù).給出下列函數(shù):①f(x)=0;②f(x)=2x;③f(x)=$\sqrt{2}$(sinx+cosx); ④f(x)=$\frac{x}{{x}^{2}+x+1}$;你認為上述四個函數(shù)中,哪幾個是F函數(shù),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖所示,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=$\frac{\sqrt{2}}{2}$AD,若E,F(xiàn)分別為PC,BD的中點.
(1)求證:EF∥平面PAD;
(2)求證:平面PDC⊥平面PAD;
(3)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題的否定為假命題的是( 。
A.?x∈R,x2+2x+2≤0B.任意一個四邊形的四個頂點共圓
C.?x∈R,sin2x+cos2x=1D.所有能被3整除的整數(shù)都是奇數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l:3x+4y-12=0與x軸、y軸分別相交于A、B.
(1)求過點P(1,2)且在x軸、y軸上截距均相等的直線的方程;
(2)求與直線l、x軸、y軸都相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列四組函數(shù)中,有相同圖象的一組是( 。
A.f(x)=x,$g(x)=\sqrt{x{\;}^2}$B.f(x)=x,$g(x)=\root{3}{x^3}$
C.f(x)=sinx,g(x)=sin(π+x)D.f(x)=x,g(x)=elnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.應(yīng)用反證法推出矛盾的推理過程中可作為條件使用的是①結(jié)論的否定②已知條件③公理、定理、定義等④原結(jié)論( 。
A.①②B.②③C.①②③D.①②④

查看答案和解析>>

同步練習(xí)冊答案