17.若函數(shù)y=cos(ωx-$\frac{π}{6}$)(ω>0)最小正周期為$\frac{π}{3}$,則ω=6.

分析 根據(jù)余弦函數(shù)的周期公式即可得到結(jié)論.

解答 解:∵f(x)=cos(ωx-$\frac{π}{6}$)的最小正周期為$\frac{π}{3}$,
∴函數(shù)的周期T=$\frac{π}{3}$=$\frac{2π}{ω}$,
∴解得ω=6.
故答案為:6.

點評 本題主要考查三角函數(shù)的周期的計算,利用三角函數(shù)的周期公式是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.命題P:一元二次方程x2+mx+1=0有實數(shù)根;命題q:二次不等式x2+2mx+3>0的解集為全體實數(shù).若p∨q為真,p∧q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)復(fù)數(shù)z=(a2+a-2)+(a2-7a+6)i,其中a∈R,當(dāng)a取何值時:
(1)z∈R?
(2)z是純虛數(shù)?
(3)z是零?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.學(xué)校將從4名男生和4名女生中選出4人分別擔(dān)任辯論賽中的一、二、三、四辯手,其中男生甲不適合擔(dān)任一辯手,女生乙不適合擔(dān)任四辯手.現(xiàn)要求:如果男生甲入選,則女生乙必須入選.那么不同的組隊形式有930種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)y=sin2x-$\sqrt{3}$cos2x,下列結(jié)論正確的個數(shù)是( 。
①圖象關(guān)于x=-$\frac{π}{12}$對稱;
②函數(shù)在[0,$\frac{π}{2}$]上的最大值為2
③函數(shù)圖象向左平移$\frac{π}{6}$個單位后為奇函數(shù).
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.cos89°cos1°+sin91°sin181°=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)g(x)=log2(x-$\frac{1}{x}$)的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知直線l1:ax+3y-3=0,l2:4x+6y-1=0.若l1的法向量恰好為l2的方向向量,則實數(shù)a=-$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在銳角△ABC中,角A,B,C分別對應(yīng)邊a,b,c,且a=2bsin A,則cos A-sin C的取值范圍是(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$).

查看答案和解析>>

同步練習(xí)冊答案