【題目】兩縣城A和B相距20km,現(xiàn)計(jì)劃在兩縣城外以AB為直徑的半圓弧上選擇一點(diǎn)C建造垃圾處理廠,其對城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對城A和城B的總影響度為城A與城B的影響度之和,記C點(diǎn)到城A的距離為xkm,建在C處的垃圾處理廠對城A和城B的總影響度為y,統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對城A的影響度與所選地點(diǎn)到城A的距離的平方成反比,比例系數(shù)為4;對城B的影響度與所選地點(diǎn)到城B的距離的平方成反比,比例系數(shù)為k,當(dāng)垃圾處理廠建在的 中點(diǎn)時,對城A和城B的總影響度為0.065.
(1)將y表示成x的函數(shù);
(2)討論(1)中函數(shù)的單調(diào)性,并判斷弧 上是否存在一點(diǎn),使建在此處的垃圾處理廠對城A和城B的總影響度最。咳舸嬖,求出該點(diǎn)到城A的距離;若不存在,說明理由.

【答案】
(1)解:由題意知AC⊥BC,BC2=400﹣x2,

其中當(dāng) 時,y=0.065,

所以k=9

所以y表示成x的函數(shù)為


(2)解: , ,

令y'=0得18x4=8(400﹣x22,

所以x2=160,即 ,

當(dāng) 時,18x4<8(400﹣x22,即y'<0所以函數(shù)為單調(diào)減函數(shù),

當(dāng) 時,18x4>8(400﹣x22,即y'>0所以函數(shù)為單調(diào)增函數(shù).

所以當(dāng) 時,即當(dāng)C點(diǎn)到城A的距離為 時,函數(shù) 有最小值


【解析】(1)先利用AC⊥BC,求出BC2=400﹣x2 , 再利用圾處理廠對城A的影響度與所選地點(diǎn)到城A的距離的平方成反比,比例系數(shù)為4;對城B的影響度與所選地點(diǎn)到城B的距離的平方成反比,比例系數(shù)為k,得到y(tǒng)和x之間的函數(shù)關(guān)系,最后利用垃圾處理廠建在的中點(diǎn)時,對城A和城B的總影響度為0.065求出k即可求出結(jié)果.(2)先求出導(dǎo)函數(shù)以及導(dǎo)數(shù)為0的根,進(jìn)而求出其單調(diào)區(qū)間,找到函數(shù)的最小值即可.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的最大(小)值與導(dǎo)數(shù),需要了解求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線l過定點(diǎn)P(1,1),且傾斜角為 ,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的坐標(biāo)系中,曲線C的極坐標(biāo)方程為
(1)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于不同的兩點(diǎn)A,B,求|AB|及|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為2的正方體沿對角線折起,得到三棱錐,則下列命題中,錯誤的為( )

A. 直線平面

B.

C. 三棱錐的外接球的半徑為

D. 的中點(diǎn),則平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)行如圖所示的流程圖,則輸出的結(jié)果S是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的標(biāo)準(zhǔn)方程為該橢圓經(jīng)過點(diǎn),且離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過橢圓長軸上一點(diǎn)作兩條互相垂直的弦.若弦的中點(diǎn)分別為,證明:直線恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合M={1,2…9}中抽取3個不同的數(shù)構(gòu)成集合{a1 , a2 , a3}
(1)對任意i≠j,求滿足|ai﹣aj|≥2的概率;
(2)若a1 , a2 , a3成等差數(shù)列,設(shè)公差為ξ(ξ>0),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓)的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中為原點(diǎn),為橢圓的離心率.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,EPD的中點(diǎn).

(1)證明:直線CE∥平面PAB;

(2)點(diǎn)M在棱PC上,且直線BM與底面ABCD所成角為45°,求二面角M-AB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進(jìn)行某項(xiàng)對抗性游戲,采用“七局四勝”制,即先贏四局者為勝,若甲、乙兩人水平相當(dāng),且已知甲先贏了前兩局.

求乙取勝的概率;

記比賽局?jǐn)?shù)為X,求X的分布列及數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊答案