【題目】給出下列幾個命題:
①命題p:任意x∈R,都有cosx≤1,則¬p:存在x0∈R,使得cosx0≤1
②命題“若a>2且b>2,則a+b>4且ab>4”的逆命題為假命題
③空間任意一點(diǎn)O和三點(diǎn)A,B,C,則 =3 =2 是A,B,C三點(diǎn)共線的充分不必要條件
④線性回歸方程y=bx+a對應(yīng)的直線一定經(jīng)過其樣本數(shù)據(jù)點(diǎn)(x1 , y1),(x2 , y2),…,(xn , yn)中的一個
其中不正確的個數(shù)為( )
A.1
B.2
C.3
D.4

【答案】B
【解析】解:對于①,命題p:任意x∈R,都有cosx≤1,則¬p:存在x0∈R,使得cosx0>1,故錯;
對于②,原命題的逆命題:“若a+b>4且ab>4“則“a>2且b>2”,比如a=1,b=5結(jié)論不成立,為假命題,正確;
對于③,空間任意一點(diǎn)O和三點(diǎn)A,B,C,若 =3 =2 ,則A,B,C三點(diǎn)共線,若A,B,C三點(diǎn)共線時, =3 =2 不一定成立,故正確;
對于④,線性回歸方程y=bx+a對應(yīng)的直線不一定經(jīng)過其樣本數(shù)據(jù)點(diǎn)(x1 , y1),(x2 , y2),…,(xn , yn)中的一個,故錯.
故選:B
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD交點(diǎn),,

(I)證明:平面平面

(II)若, 三棱錐的體積為,求該三棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線過點(diǎn)P且與x軸、y軸的正半軸分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),是否存在這樣的直線滿足下列條件:①△AOB的周長為12;②△AOB的面積為6.若存在,求出方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的標(biāo)準(zhǔn)方程為,該橢圓經(jīng)過點(diǎn),且離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過橢圓長軸上一點(diǎn)作兩條互相垂直的弦.若弦的中點(diǎn)分別為,證明:直線恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且過點(diǎn)P。

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知斜率為1的直線l過橢圓的右焦點(diǎn)F交橢圓于A.B兩點(diǎn),求弦AB的長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓)的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中為原點(diǎn),為橢圓的離心率.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入(單位:千元)的數(shù)據(jù)如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號

1

2

3

4

5

6

7

人均純收入

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y關(guān)于的線性回歸方程;

(2)判斷y與之間是正相關(guān)還是負(fù)相關(guān)?

(3)預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校書法興趣組有3名男同學(xué)AB,C和3名女同學(xué)XY,Z,其年級情況如下表:

一年級

二年級

三年級

男同學(xué)

A

B

C

女同學(xué)

X

Y

Z

現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加書法比賽每人被選到的可能性相同

用表中字母列舉出所有可能的結(jié)果;

設(shè)M為事件“選出的2人來自不同年級且性別相同”,求事件M發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓C,直線l

當(dāng)時,若圓C與直線l交于AB兩點(diǎn),過點(diǎn)A,B分別作l的垂線與y軸交于D,E兩點(diǎn),求的值;

過直線l上的任意一點(diǎn)P作圓的切線為切點(diǎn),若平面上總存在定點(diǎn)N,使得,求圓心C的橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案