計(jì)算:7
33
-3
324
-6
3
1
9
+
43
33
=
 
考點(diǎn):有理數(shù)指數(shù)冪的化簡(jiǎn)求值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:直接利用根式與有理指數(shù)冪的運(yùn)算法則求解即可.
解答: 解:7
33
-3
324
-6
3
1
9
+
43
33

=7×3
1
3
-3×24
1
3
-6×3-
2
3
+3
1
3

=8×3
1
3
-3×3
1
3
-6×3-
2
3

=2×3
1
3
-6×3-
2
3

=2×3
1
3
-2×3
1
3

=0
故答案為:0.
點(diǎn)評(píng):本題考查根式與有理指數(shù)冪的運(yùn)算,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)P(3,0)在下列條件下求直線方程:
(1)l過直線m:2x-y-2=0與直線n:x+y+3=0的交點(diǎn);
(2)l被圓C:x2+y2-4x-4y=0所截得的弦長(zhǎng)為2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如程序框圖所示已知集合A={x|框圖中輸出的x值},集合B={y|框圖中輸出的y值},當(dāng)x=1時(shí)A∩B=( 。
A、∅B、{3}
C、{1,3,5}D、{3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4acosx•sin(x-
π
3
)+
3
a+b,設(shè)x∈[0.
π
2
],f(x)的最小值是-2,最大值是
3
,求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,以點(diǎn)(1,0)為圓心,1為半徑的圓的極坐標(biāo)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)(
3
,-2)且傾斜角為120°的直線l,與圓x2+y2-2y=0的位置關(guān)系是( 。
A、相交B、相切
C、相離D、位置關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn),A為雙曲線的左頂點(diǎn),以F1,F(xiàn)2為為直徑的圓交雙曲線的某條漸近線于MN兩點(diǎn)(M在x軸上方,N在x軸下方),c為雙曲線的半焦距,O為坐標(biāo)原點(diǎn).則下列命題正確的是
 
(寫出所有正確命題的編號(hào)).
①|(zhì)OM|=|ON|=c;
②點(diǎn)N的坐標(biāo)為(a,b);
③∠MAN>90°;
④若∠MAN=120°,則雙曲線C的離心率為
21
3
;
⑤若∠MAN=120°,且△AMN的面積為2
3
,則雙曲線C的方程為
x2
3
-
y2
4
=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
kx+1,x≤0
lnx,x>0
,下列關(guān)于函數(shù)y=f[f(x)]+1的零點(diǎn)個(gè)數(shù)的判斷正確的是( 。
A、無(wú)論k為何值,均有2個(gè)零點(diǎn)
B、無(wú)論k為何值,均有4個(gè)零點(diǎn)
C、當(dāng)k>0時(shí),有3個(gè)零點(diǎn);當(dāng)k<0時(shí),有2個(gè)零點(diǎn)
D、當(dāng)k>0時(shí),有4個(gè)零點(diǎn);當(dāng)k<0時(shí),有1個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-27,45,-18),
a
=(-9,9,9).在y0z面上找一點(diǎn)B,使得
AB
a
,則點(diǎn)B的坐標(biāo)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案