3.若${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx=π${∫}_{1}^{2}$(x-a)dx,則a=( 。
A.2B.1C.$\frac{1}{2}$D.-$\frac{1}{2}$

分析 根據(jù)定積分的計算公式,得到關(guān)于a的方程,解得即可.

解答 解:由定積分的幾何意義可知:${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx=π,
π${∫}_{1}^{2}$(x-a)dx=π($\frac{1}{2}$x2-ax)${丨}_{1}^{2}$,
$\frac{1}{2}$×4-a-$\frac{1}{2}$=1,
a=$\frac{1}{2}$,
故答案:A.

點評 本題考查定積分的概念和性質(zhì),是基礎(chǔ)題.解題時要認真審題,仔細解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若$\overrightarrow{a}$=(3,4),$\overrightarrow$=(sinα,cosα),且$\overrightarrow{a}⊥\overrightarrow$,則tanα=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知正項數(shù)列{an}的前n項和為Sn,且點(an,sn)在拋物線y=λx2上.
(1)求證:數(shù)列{an}為單調(diào)遞增數(shù)列;
(2)若λ=1,證明:Sn≥$(\frac{n+1}{2})^{2}$:
(3)是否存在實數(shù)λ,使數(shù)列{an}為等差數(shù)列?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直角三角形的面積等于50,兩條直角邊各為多少時,兩條直角邊的和最小,最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.將函敬y=sin2x的圖象向右平移$\frac{π}{4}$個單位長度,所得圖象對應(yīng)的函數(shù)解析式是(  )
A.y=cos2xB.y=-cos2xC.y=sin(2x-$\frac{π}{4}$)D.y=-sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某中職學(xué)校的學(xué)生人數(shù)每年平均增長率為20%,大約經(jīng)過多少年,該校的學(xué)生人數(shù)將翻一番?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.?dāng)?shù)列{an}中,a1=1,a2n+an=n,a2n+1-an=1,則{an}前30項和為131.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.天氣預(yù)報說,在今后的三天中,每一天下雨的概率均為40%.現(xiàn)采用隨機模擬試驗的方法估計這三天中恰有兩天下雨的概率:先利用計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三個隨機數(shù)作為一組,代表這三天的下雨情況.經(jīng)隨機模擬試驗產(chǎn)生了如下20組隨機數(shù):
488  932  812  458  989  431  257  390  024  556
734  113  537  569  683  907  966  191  925  271
據(jù)此估計,這三天中恰有兩天下雨的概率近似為0.3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.請閱讀下列用For語句寫出的算法,說明該算法的處理功能,并畫出算法框圖.

查看答案和解析>>

同步練習(xí)冊答案