【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓Ω: 的離心率為 ,直線l:y=2上的點(diǎn)和橢圓Ω上的點(diǎn)的距離的最小值為1.

(Ⅰ) 求橢圓Ω的方程;
(Ⅱ) 已知橢圓Ω的上頂點(diǎn)為A,點(diǎn)B,C是Ω上的不同于A的兩點(diǎn),且點(diǎn)B,C關(guān)于原點(diǎn)對(duì)稱,直線AB,AC分別交直線l于點(diǎn)E,F(xiàn).記直線AC與AB的斜率分別為k1 , k2
①求證:k1k2為定值;
②求△CEF的面積的最小值.

【答案】解:(Ⅰ)由題知b=1,由
所以a2=2,b2=1.
故橢圓的方程為
(Ⅱ)①證法一:設(shè)B(x0 , y0)(y0>0),則 ,
因?yàn)辄c(diǎn)B,C關(guān)于原點(diǎn)對(duì)稱,則C(﹣x0 , ﹣y0),
所以
證法二:直線AC的方程為y=k1x+1,
,
解得 ,同理 ,
因?yàn)锽,O,C三點(diǎn)共線,則由 ,
整理得(k1+k2)(2k1k2+1)=0,
所以
②直線AC的方程為y=k1x+1,直線AB的方程為y=k2x+1,不妨設(shè)k1>0,則k2<0,
令y=2,得 ,
,
所以,△CEF的面積 =
=

則SCEF= ,當(dāng)且僅當(dāng) 取得等號(hào),
所以△CEF的面積的最小值為
【解析】(Ⅰ)由題知b=1,由 ,b=1,聯(lián)立解出即可得出.(Ⅱ)①證法一:設(shè)B(x0 , y0)(y0>0),則 ,因?yàn)辄c(diǎn)B,C關(guān)于原點(diǎn)對(duì)稱,則C(﹣x0 , ﹣y0),利用斜率計(jì)算公式即可得出.證法二:直線AC的方程為y=k1x+1,與橢圓方程聯(lián)立可得坐標(biāo),即可得出.②直線AC的方程為y=k1x+1,直線AB的方程為y=k2x+1,不妨設(shè)k1>0,則k2<0,令y=2,得 ,可得△CEF的面積

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)關(guān)于的一元二次方程

(1)若是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù), 是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;

(2)若時(shí)從區(qū)間上任取的一個(gè)數(shù), 是從區(qū)間上任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知MOD函數(shù)是一個(gè)求余函數(shù),記MOD(m,n)表示m除以n的余數(shù),例如MOD(8,3)=2.如圖是某個(gè)算法的程序框圖,若輸入m的值為48時(shí),則輸出i的值為(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線 過(guò)坐標(biāo)原點(diǎn) ,圓 的方程為
(1)當(dāng)直線 的斜率為 時(shí),求 與圓 相交所得的弦長(zhǎng);
(2)設(shè)直線 與圓 交于兩點(diǎn) ,且 的中點(diǎn),求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線 ,以原點(diǎn)為圓心,雙曲線的實(shí)半軸長(zhǎng)為半徑的圓與雙曲線的兩條漸近線相交于 四點(diǎn),四邊形 的面積為 ,則雙曲線的離心率為( )
A.
B.2
C.
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線 的頂點(diǎn)在原點(diǎn) ,對(duì)稱軸是 軸,且過(guò)點(diǎn) .
(Ⅰ)求拋物線 的方程;
(Ⅱ)已知斜率為 的直線 軸于點(diǎn) ,且與曲線 相切于點(diǎn) ,點(diǎn) 在曲線 上,且直線 軸, 關(guān)于點(diǎn) 的對(duì)稱點(diǎn)為 ,判斷點(diǎn) 是否共線,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C1y=cos x,C2y=sin (2x+),則下面結(jié)論正確的是( )

A. C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

B. C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

C. C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個(gè)單位長(zhǎng)度,得到曲線C2

D. C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個(gè)單位長(zhǎng)度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) ,若函數(shù) 在x=1處與直線 相切.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)求函數(shù) 上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家舉行大型的促銷活動(dòng),經(jīng)測(cè)算某產(chǎn)品當(dāng)促銷費(fèi)用為x萬(wàn)元時(shí),銷售量t萬(wàn)件滿足t=5- (其中0 x a,a為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品t萬(wàn)件還需投入成本(10+2t)萬(wàn)元(不含促銷費(fèi)用),產(chǎn)品的銷售價(jià)格定為5+ 萬(wàn)元/萬(wàn)件.
(1)將該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為促銷費(fèi)用x萬(wàn)元的函數(shù);
(2)促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案