16.把下列參數(shù)方程化為普通方程
(1)$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù));
(2)$\left\{\begin{array}{l}{x=sinθ}\\{y=co{s}^{2}θ}\end{array}\right.$(θ為參數(shù),θ∈[0,2π])

分析 (1)消去參數(shù)t即可得到普通方程.
(2)消去參數(shù)θ,即可得到普通方程.

解答 解:(1)$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=5+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù));
可得:$\frac{x-1}{y-5}=\frac{\frac{1}{2}t}{\frac{\sqrt{3}}{2}t}$=$\frac{1}{\sqrt{3}}$,
即$\sqrt{3}x-y-\sqrt{3}+5=0$.
參數(shù)方程化為普通方程為:$\sqrt{3}x-y-\sqrt{3}+5=0$.
(2)$\left\{\begin{array}{l}{x=sinθ}\\{y=co{s}^{2}θ}\end{array}\right.$(θ為參數(shù),θ∈[0,2π])
可得:x∈[-1,1].
x2+y=sin2θ+cos2θ=1.
參數(shù)方程化為普通方程為:x2=1-y.

點(diǎn)評(píng) 本題考查參數(shù)方程與普通方程的互化,注意x的范圍是易錯(cuò)點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=loga(a-ax)(0<a<1).
(1)求函數(shù)的定義域和值域;
(2)判斷函數(shù)的單調(diào)性;
(3)若f-1(x2-2)>f(x),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某商場(chǎng)銷(xiāo)售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷(xiāo)售量y(單位:千克)與銷(xiāo)售價(jià)格x(單位:元/千克)滿(mǎn)足關(guān)系式:y=$\frac{a}{x-3}$+10(x-6)2,其中3<x<6,a為常數(shù),已知銷(xiāo)售的價(jià)格為5元/千克時(shí),每日可以售出該商品11千克.
(1)求a的值;
(2)若該商品的成本為3元/千克,試確定銷(xiāo)售價(jià)格x的值,使商場(chǎng)每日銷(xiāo)售該商品所獲得的利潤(rùn)最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.f是集合M={a,b,c}到集合N={-1,0,1}的映射,且f(a)+f(b)=f(c),則不同的映射共有7個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知圓方程為x2+y2+4mx-12y+4m-2=0與直線(xiàn)x-y+1=0.
(1)用m去表示圓的半徑和面積;
(2)求圓面積最小時(shí),圓的一般式方程;
(3)當(dāng)圓面積最小時(shí),判斷圓與直線(xiàn)的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知曲線(xiàn)C:x2+y2+2x+4y+m=0.
(1)當(dāng)m為何值時(shí),曲線(xiàn)C表示圓?
(2)若直線(xiàn)l:y=x-m與圓C相切,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.過(guò)A(m,1)與B(-1,m)的直線(xiàn)與過(guò)點(diǎn)P(1,2),Q(-5,0)的直線(xiàn)垂直,則m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知曲線(xiàn)C1的參數(shù)方程為$\left\{\begin{array}{l}x=4t\\ y=3t-1\end{array}\right.(t為參數(shù))$,當(dāng)t=0時(shí),曲線(xiàn)C1上對(duì)應(yīng)的點(diǎn)為P.以原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為$ρ=\frac{{2\sqrt{3}}}{{\sqrt{3+{{sin}^2}θ}}}$.     
(1)求曲線(xiàn)C1的極坐標(biāo)方程與C2的直角坐標(biāo)方程.
(2)設(shè)曲線(xiàn)C1與C2的公共點(diǎn)為A,B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)函數(shù)f(x)=$\frac{xlnx}{x-1}$,g(x)=-$\frac{1}{2}a({x^2}-x-2)$,其中a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意x>1,都有f(x)>g(x-1)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案