【題目】如圖,在四棱錐PABCD中,底面ABCD為菱形,PA⊥平面ABCD,∠ABC60°,點E,F分別是BC,PC的中點,用向量方法解決以下問題:

1)求異面直線AEPD所成角的大;

2)若ABAP,求二面角EAFC的余弦值的大。

【答案】12

【解析】

1)推導出,,從而平面,以為原點,軸,軸,軸,建立空間直角坐標系,利用向量法能求出異面直線所成角的大。

2 求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值的大。

1)由四邊形為菱形,

可得為正三角形.因為的中點,所以

,因此

為原點,軸,軸,軸,建立空間直角坐標系,如圖:

,,則,0,,0,,0,2,

,0,,,2,

,

異面直線所成角的大小為

2

,則

,0,,,0,,,1,,,0,,,

0,,,,,

設平面的法向量,,,

,取,得,2,

設平面的法向量,,

,取,得,

設二面角的平面角為

,

二面角的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】“割圓術”是劉徽最突出的數(shù)學成就之一,他在《九章算術注》中提出割圓術,并作為計算圓的周長,面積已經(jīng)圓周率的基礎,劉徽把圓內接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內接正六邊形時,某同學利用計算機隨機模擬法向圓內隨機投擲點,計算得出該點落在正六邊形內的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖已知橢圓,是長軸的一個端點,弦過橢圓的中心,且,.

(Ⅰ)求橢圓的方程:

(Ⅱ)設為橢圓上異于且不重合的兩點,且的平分線總是垂直于軸,是否存在實數(shù),使得,若存在,請求出的最大值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直線不與坐標軸垂直,且與拋物線有且只有一個公共點.

1)當點的坐標為時,求直線的方程;

2)設直線軸的交點為,過點且與直線垂直的直線交拋物線,兩點.時,求點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,底面四邊形為直角梯形,,為線段上一點.

(1)若,則在線段上是否存在點,使得平面?若存在,請確定點的位置;若不存在,請說明理由

(2)己知,若異面直線角,二而角的余弦值為,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】利用一半徑為4cm的圓形紙片(圓心為O)制作一個正四棱錐.方法如下:

(1)O為圓心制作一個小的圓;

(2)在小的圓內制作一內接正方形ABCD;

(3)以正方形ABCD的各邊向外作等腰三角形,使等腰三角形的頂點落在大圓上(如圖);

(4)將正方形ABCD作為正四棱錐的底,四個等腰三角形作為正四棱錐的側面折起,使四個等腰三角形的頂點重合,問:要使所制作的正四棱錐體積最大,則小圓的半徑為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,是邊長為的正三角形,點為正方形的中心,為線段的中點,.則下列結論正確的是(

A.平面平面

B.直線是異面直線

C.線段的長度相等

D.直線與平面所成的角的余弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,設命題函數(shù)R上單調遞減,命題對任意實數(shù)x,不等式恒成立.

1)求非q為真時,實數(shù)c的取值范圍;

2)如果命題為真命題,且為假命題,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a35,a42a23,又等比數(shù)列{bn}中,b13且公比q3.

1)求數(shù)列{an},{bn}的通項公式;

2)若cnan+bn,求數(shù)列{cn}的前n項和Sn.

查看答案和解析>>

同步練習冊答案