11.四棱錐P-ABCD的底面ABCD是矩形,側(cè)面PAD⊥平面ABCD,∠APD=120°,AB=PA=PD=2,則該四棱錐P-ABCD外接球的體積為( 。
A.$\frac{32π}{3}$B.$\frac{20\sqrt{5}π}{3}$C.8$\sqrt{6}$πD.36π

分析 設(shè)ABCD的中心為O′,球心為O,則O′B=$\frac{1}{2}$BD=2,設(shè)O到平面ABCD的距離為d,則R2=d2+22=22+(1-d)2,求出R,即可求出四棱錐P-ABCD的外接球的體積.

解答 解:取AD的中點E,連接PE,
△PAD中,∠APD=120°,PA=PD=2,∴PE=1,AD=2$\sqrt{3}$,
設(shè)ABCD的中心為O′,球心為O,則O′B=$\frac{1}{2}$BD=2,
設(shè)O到平面ABCD的距離為d,則R2=d2+22=22+(2-d)2,
∴d=1,R=$\sqrt{5}$,
∴四棱錐P-ABCD的外接球的體積為$\frac{4}{3}π{R}^{3}$=$\frac{20\sqrt{5}}{3}π$.
故選B.

點評 本題考查四棱錐P-ABCD的外接球的體積,考查學(xué)生的計算能力,正確求出四棱錐P-ABCD的外接球的半徑是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,∠B=$\frac{π}{2}$,AB=BC=2,P為AB邊上一動點,PD∥BC交AC于點D,現(xiàn)將△PDA沿PD翻折至△PDA′,使平面PDA′⊥平面PBCD,當(dāng)棱錐A′-PBCD的體積最大時,PA的長為( 。
A.$\frac{{2\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題p:x2-3x+2=0,命題q:x=2,則p是q的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足bcosA+(2c+a)cosB=0.
(1)求角B的大小;
(2)若b=4,△ABC的面積為$\sqrt{3}$,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知(x,y)為$\left\{\begin{array}{l}x-y+1≥0\\ 4x+y-16≤0\\ x≥0,y≥0\end{array}\right.$所表示的平面區(qū)域M內(nèi)的點,則z=y-2x的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖四棱錐P-ABCD中,底面ABCD為平行四邊形,∠ABC=60°,AD=2,AB=PA=1,且PA⊥平面ABCD.
(1)請判定PB與AC的位置關(guān)系,并證明;
(2)求頂點A到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知f(x+1)=f(x-1),f(x)=f(-x+2),方程f(x)=0在[0,1]內(nèi)有且只有一個根x=$\frac{1}{2}$,則f(x)=0在區(qū)間[0,2016]內(nèi)根的個數(shù)為( 。
A.2015B.1007C.2016D.1008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\frac{{{2^{x+1}}+1}}{{{2^x}+1}}$-xcosx(-π≤x≤π)的最大值M與最小值m的關(guān)系是( 。
A.M+m=4B.M+m=3C.M-m=4D.M-m=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個多面體的直觀圖和三視圖如圖所示,點M是邊AB上的動點,記四面體E-FMC的體積為V1,多面體ADF-BCE的體積為V2,則$\frac{V_1}{V_2}$=( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$
C.$\frac{1}{2}$D.不是定值,隨點M的變化而變化

查看答案和解析>>

同步練習(xí)冊答案