分析 設(shè)點(diǎn)A(1,2)關(guān)于直線x-y-1=0的對稱點(diǎn)A′的坐標(biāo)為(a,b),利用垂直及中點(diǎn)在軸上這兩個條件,求出a、b的值,可得答案.
解答 解:設(shè)點(diǎn)A(1,2)關(guān)于直線x-y-1=0的對稱點(diǎn)A′的坐標(biāo)為(a,b),
則由$\left\{\begin{array}{l}{\frac{b-2}{a-1}×1=-1}\\{\frac{a+1}{2}-\frac{b+2}{2}-1=0}\end{array}\right.$,求得a=0,b=3,故點(diǎn)A′(0,3),
故答案為:(0,3).
點(diǎn)評 本題主要考查求一個點(diǎn)關(guān)于某直線的對稱點(diǎn)的坐標(biāo)的求法,利用了垂直及中點(diǎn)在軸上這兩個條件,還考查了中點(diǎn)公式,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{-4,\frac{17}{8}}]$ | B. | $(-∞,-4)∪(\frac{17}{8},+∞)$ | C. | [-4,4] | D. | (-∞,-4)∪(4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (1,$\sqrt{2}$) | C. | (0,2) | D. | (0,$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 某校高二1班55人,2班54人,3班52人,由此推出高二所有班級人數(shù)超過50人 | |
B. | 在數(shù)列{an}中,a1=1,an+1=$\frac{a_n}{{1+{a_n}}}$(n=1,2,3,…),由此歸納數(shù)列{an}的通項(xiàng)公式 | |
C. | 由平面三角形性質(zhì),推測空間四面體的性質(zhì) | |
D. | 兩直線平行,內(nèi)錯角相等,如果∠A與∠B是兩條平行直線的內(nèi)錯角,則∠A=∠B |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{9}$ | B. | $\frac{64}{81}$ | C. | $\frac{17}{81}$ | D. | $\frac{1}{81}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com