4.已知點(diǎn)A(1,2),直線l:x-y-1=0,則點(diǎn)A關(guān)于直線l的對稱點(diǎn)A'的坐標(biāo)為(0,3).

分析 設(shè)點(diǎn)A(1,2)關(guān)于直線x-y-1=0的對稱點(diǎn)A′的坐標(biāo)為(a,b),利用垂直及中點(diǎn)在軸上這兩個條件,求出a、b的值,可得答案.

解答 解:設(shè)點(diǎn)A(1,2)關(guān)于直線x-y-1=0的對稱點(diǎn)A′的坐標(biāo)為(a,b),
則由$\left\{\begin{array}{l}{\frac{b-2}{a-1}×1=-1}\\{\frac{a+1}{2}-\frac{b+2}{2}-1=0}\end{array}\right.$,求得a=0,b=3,故點(diǎn)A′(0,3),
故答案為:(0,3).

點(diǎn)評 本題主要考查求一個點(diǎn)關(guān)于某直線的對稱點(diǎn)的坐標(biāo)的求法,利用了垂直及中點(diǎn)在軸上這兩個條件,還考查了中點(diǎn)公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=cos2x+3sinx的值域是( 。
A.$[{-4,\frac{17}{8}}]$B.$(-∞,-4)∪(\frac{17}{8},+∞)$C.[-4,4]D.(-∞,-4)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知定義城為(-1,1)的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x)=5+cosx,且f(0)=0.如果f(1-x)+f(1-x2)<0,則實(shí)數(shù)x的取值范圍為( 。
A.(0,1)B.(1,$\sqrt{2}$)C.(0,2)D.(0,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列幾種推理是演繹推理的是( 。
A.某校高二1班55人,2班54人,3班52人,由此推出高二所有班級人數(shù)超過50人
B.在數(shù)列{an}中,a1=1,an+1=$\frac{a_n}{{1+{a_n}}}$(n=1,2,3,…),由此歸納數(shù)列{an}的通項(xiàng)公式
C.由平面三角形性質(zhì),推測空間四面體的性質(zhì)
D.兩直線平行,內(nèi)錯角相等,如果∠A與∠B是兩條平行直線的內(nèi)錯角,則∠A=∠B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足bcosA+(2c+a)cosB=0.
(1)求角B的大。
(2)若b=4,△ABC的面積為$\sqrt{3}$,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),圓C的極坐標(biāo)方程是ρ=4sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,
(Ⅰ)寫出直線l的極坐標(biāo)方程;
(Ⅱ)求直線l被圓C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖四棱錐P-ABCD中,底面ABCD為平行四邊形,∠ABC=60°,AD=2,AB=PA=1,且PA⊥平面ABCD.
(1)請判定PB與AC的位置關(guān)系,并證明;
(2)求頂點(diǎn)A到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若拋物線y=ax2的焦點(diǎn)F的坐標(biāo)為(0,-1),則實(shí)數(shù)a的值為$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某人投籃一次投中的概率是$\frac{1}{3}$,設(shè)投籃5次,投中,投不中的次數(shù)分別是ξ,η,則事件“ξ≤η”的概率為( 。
A.$\frac{2}{9}$B.$\frac{64}{81}$C.$\frac{17}{81}$D.$\frac{1}{81}$

查看答案和解析>>

同步練習(xí)冊答案