19.如圖是y=f(x)導(dǎo)數(shù)的圖象,對于下列四個判斷:
①f(x)在[-2,-1]上是增函數(shù);
②x=-1是f(x)的極小值點;
③f(x)在[-1,2]上是增函數(shù),在[2,4]上是減函數(shù);
④x=3是f(x)的極小值點.
其中正確的判斷是②③.(填序號)

分析 通過圖象,結(jié)合導(dǎo)函數(shù)的符號,根據(jù)函數(shù)單調(diào)性,極值和導(dǎo)數(shù)之間的關(guān)系,逐一進行判斷,即可得到結(jié)論.

解答 解:由導(dǎo)函數(shù)的圖象可得:

 x[-2,-1)-1 (-1,2) 2 (2,4) 4(4,+∞)
 f′(x)- 0+ 0- 0+
 f(x) 單減 極小 單增 極大 單減 極小單增
①由表格可知:f(x)在區(qū)間[-2,-1]上是減函數(shù),因此不正確;
②x=-1是f(x)的極小值點,正確;
③f(x)在[-1,2]上是增函數(shù),在[2,4]上是減函數(shù),正確;
④當2<x<4時,函數(shù)f(x)為減函數(shù),則x=3不是函數(shù)f(x)的極小值,因此④不正確.
綜上可知:②③正確.
故答案為:②③

點評 本小題考查導(dǎo)數(shù)的運用以及看圖能力.注意看清圖畫的是導(dǎo)函數(shù)的圖象,不要與函數(shù)圖象混淆.考查學(xué)生的識圖和應(yīng)用能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,棱長為2的正方形ABCD-A1B1C1D1中,E是棱B1C1的中點,動點P在底面ABCD內(nèi),且PA1=A1E,則點P運動形成圖形的長度是( 。
A.1B.$\frac{π}{2}$C.$\sqrt{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知直線l1:a2x-y+1=0、l2:x+ay-3=0互相垂直,則a的值為( 。
A.0B.1C.0或1D.0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知x1,x2是函數(shù)f(x)=e-x-|lnx|的兩個不同零點,則x1x2的取值范圍是( 。
A.(0,$\frac{1}{e}$)B.($\frac{1}{e}$,1]C.(1,e)D.($\frac{1}{e}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)數(shù)列{an}是首項為1,公比為q(q≠-1)的等比數(shù)列,若$\left\{{\frac{1}{{{a_n}+{a_{n+1}}}}}\right\}$是等差數(shù)列,則$(\frac{1}{a_2}+\frac{1}{a_3})+(\frac{1}{a_3}+\frac{1}{a_4})+…+(\frac{1}{{{a_{2015}}}}+\frac{1}{{{a_{2016}}}})$=( 。
A.4024B.4026C.4028D.4030

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在區(qū)間[0,4]上隨機取兩個實數(shù)x,y,使得x+2y≤8的概率為( 。
A.$\frac{1}{4}$B.$\frac{3}{16}$C.$\frac{9}{16}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下面是一個2×2列聯(lián)表,則表中a、b處的值分別為( 。
y1y2總計
x1a2173
x222527
總計b46100
A.94、96B.52、54C.52、50D.54、52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.數(shù)列{an}滿足:a1=1,${a_n}_{+1}=\frac{{3{a_n}}}{{{a_n}+3}}$,n∈N*.    
(1)令${b_n}=\frac{1}{a_n}$,求證:數(shù)列{bn}為等差數(shù)列;
(2)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,若a=18,b=24,A=45°,則此三角形( 。
A.無解B.有兩解C.有一解D.解的個數(shù)不確定

查看答案和解析>>

同步練習(xí)冊答案