精英家教網 > 高中數學 > 題目詳情
4.若橢圓的方程$\frac{x^2}{10-a}+\frac{y^2}{a-2}$=1,且此橢圓的離心率為$\frac{{\sqrt{2}}}{2}$,則實數a=$\frac{14}{3}$或$\frac{22}{3}$.

分析 討論橢圓的焦點在x,y軸上時,運用離心率公式,計算即可得到所求值.

解答 解:當橢圓的焦點在x軸上時,
可得10-a>a-2>0,即2<a<6,
由e=$\frac{\sqrt{2}}{2}$,可得(10-a)-(a-2)=$\frac{1}{2}$(10-a),
解得a=$\frac{14}{3}$;
當橢圓的焦點在y軸上時,
可得a-2>10-a>0,即6<a<10,
由e=$\frac{\sqrt{2}}{2}$,可得(a-2)-(10-a)=$\frac{1}{2}$(a-2),
解得a=$\frac{22}{3}$.
故答案為:$\frac{14}{3}$或$\frac{22}{3}$.

點評 本題考查橢圓的離心率的運用,注意分類討論的思想方法,考查運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

2.已知{an}滿足a1=1,an+an+1=($\frac{1}{4}$)n(n∈N*),Sn=a1+4a2+42a3+…+4n-1an,則5Sn-4nan=(  )
A.n-1B.nC.2nD.n2

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.${∫}_{0}^{2π}$|cosx|dx=4.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.設△ABC的內角A,B,C所對的邊長分別為a,b,c,且S△ABC=3,0≤$\overrightarrow{AB}$•$\overrightarrow{AC}$≤6,函數f(θ)=2sin2($\frac{π}{4}$+θ)-$\sqrt{3}$cos2θ.
(1)求角A的取值范圍;
(2)求f(A)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.已知△ABC的兩個頂點A、B的坐標分別為A(0,0),B(6,0),頂點C在曲線y=x2+3上運動,求△ABC重心的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.已知拋物線y2=2px(p>0)的焦點為F,準線為l,A,B是拋物線上過F的兩個端點,設線段AB的中點M在l上的攝影為N,則$\frac{|MN|}{|AB|}$的值是( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.我國古代用一首詩歌形式提出的數列問題:遠望巍巍塔七層,紅燈向下成倍增,共燈三百八十一,請問塔頂幾盞燈?( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.若直線ax-by=2(a>0,b>0)過圓x2+y2-4x+2y+1=0的圓心,則ab的最大值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.對于橢圓$\frac{{x}^{2}}{9-m}$+$\frac{{y}^{2}}{m-1}$=1,長軸在y軸上,若焦距為4,則m等于( 。
A.4B.7C.14D.38

查看答案和解析>>

同步練習冊答案