已知數(shù)列{an}為遞增等比數(shù)列,a2a7=32,a3+a6=18,求數(shù)列{an}的通項(xiàng)公式.
分析:由等比數(shù)列的性質(zhì)可知,a2a7=a3•a6,結(jié)合已知a3+a6=18,且a6>a3可求a6,a3,然后由q3=
a6
a3
可求公比,最后再代入an=a3qn-3可求
解答:解:由等比數(shù)列的性質(zhì)可知,a2a7=a3•a6=32,
又∵a3+a6=18,且a6>a3
解得a6=16,a3=2
∴q3=
a6
a3
=8
∴q=2
an=a3qn-3=2•2n-3=2n-2
點(diǎn)評(píng):本題主要考查了等比數(shù)列的性質(zhì)及等比數(shù)列的通項(xiàng)公式的簡(jiǎn)單應(yīng)用,解題的關(guān)鍵是熟練掌握基本公式
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足遞推關(guān)系式:an=
4an-1-2
an-1+1
(n≥2,n∈N),首項(xiàng)為a1

(1)若a1>a2,求a1的取值范圍;
(2)記bn=
an-2
an-1
(n∈N*),1<a1<2,求證:數(shù)列{bn}
是等比數(shù)列;
(3)若an>an+1(n∈N*)恒成立,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在△ABC中,角A、B、C對(duì)應(yīng)的邊分別為a、b、c,且bcosC+ccosB=3acosB,
(Ⅰ)求cosB的值;
(Ⅱ)若
BA
BC
=2
b=2
2
,求a和c的值.
(2)已知數(shù)列{an}滿足遞推關(guān)系式an=2an-1+1(n≥2),其中a4=15.求數(shù)列{an}的通項(xiàng)公式和數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•靜安區(qū)一模)已知數(shù)列{an}的遞推公式為
an=3an-1-2n+3,(n≥2,n∈N*)
a1=2

(1)令bn=an-n,求證:數(shù)列{bn}為等比數(shù)列;
(2)求數(shù)列{an}的前 n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•武漢模擬)已知數(shù)列{an}滿足遞推關(guān)系式:an+2an-an+12=tn(t-1),(n∈N*),且a1=1,a2=t.(t為常數(shù),且t>1)
(1)求a3
(2)求證:{an}滿足關(guān)系式an+2-2tan+1+tan=0,(n∈N*;
(3)求證:an+1>an≥1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的遞推公式an=
n,n為奇數(shù)
a
n
2
,n為偶數(shù)
(n∈N*)
,則a24+a25=
 
;數(shù)列{an}中第8個(gè)5是該數(shù)列的第
 
  項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案