考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(I)2S
n+1=4S
n+1(n∈N
*),可得當(dāng)n≥2時(shí),2S
n=4S
n-1+1,2a
n+1=4a
n,即a
n+1=2a
n,當(dāng)n=1時(shí),2(a
1+a
2)=4a
1+1,解得a
2=1.滿足
=2.
∴數(shù)列{a
n}是等比數(shù)列,利用等比數(shù)列的通項(xiàng)公式即可得出.
(II)b
n=-3+log
2a
n=
-3+log22n-2=n-5.?dāng)?shù)列{b
n}的前n項(xiàng)和S
n=
=
.當(dāng)1≤n≤5時(shí),數(shù)列{|b
n|}的前n項(xiàng)和T
n=-S
n.當(dāng)6≤n時(shí),數(shù)列{|b
n|}的前n項(xiàng)和T
n=-S
5+b
6+b
7+…+b
n=-2S
5+S
n即可得出.
解答:
解:(I)∵2S
n+1=4S
n+1(n∈N
*),∴當(dāng)n≥2時(shí),2S
n=4S
n-1+1,
∴2a
n+1=4a
n,即a
n+1=2a
n,
2(a
1+a
2)=4a
1+1,
∴
2(+a2)=4×+1,
解得a
2=1.滿足
=2.
∴數(shù)列{a
n}是等比數(shù)列,
通項(xiàng)公式a
n=
×2n-1=2
n-2.
(II)b
n=-3+log
2a
n=
-3+log22n-2=n-5.
數(shù)列{b
n}的前n項(xiàng)和S
n=
=
當(dāng)1≤n≤5時(shí),數(shù)列{|b
n|}的前n項(xiàng)和T
n=-S
n=
.
當(dāng)6≤n時(shí),數(shù)列{|b
n|}的前n項(xiàng)和T
n=-S
5+b
6+b
7+…+b
n=-2S
5+S
n=
-
2×=
+20.
綜上可得:T
n=
.
點(diǎn)評:本題考查了遞推式的應(yīng)用、等比數(shù)列的通項(xiàng)公式、等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式,考查了分類討論的思想方法,考查了推理能力與計(jì)算能力,屬于難題.