15.函數(shù)f(x)=$|\begin{array}{l}{sinx}&{cosx}\\{cosx}&{sinx}\end{array}|$的最小正周期是π.

分析 根據(jù)行列式的計算法則,化簡f(x),求出f(x)的最小正周期.

解答 解:函數(shù)f(x)=$|\begin{array}{l}{sinx}&{cosx}\\{cosx}&{sinx}\end{array}|$
=sin2x-cos2x
=-cos2x;
∴f(x)的最小正周期是:
T=$\frac{2π}{ω}$=π.
故答案為:π.

點(diǎn)評 本題考查了行列式的運(yùn)算與三角函數(shù)的化簡問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點(diǎn)P(tanα,sinα-cosα)在第一象限,且0≤α≤2π,則角α的取值范圍是$(\frac{π}{4},\frac{π}{2})∪(π,\frac{5π}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.化簡sin690°的值是( 。
A.0.5B.-0.5C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.對$?x∈(\;0\;,\;\frac{1}{3}\;)$,23x≤logax+1恒成立,則實數(shù)a的取值范圍是( 。
A.$(\;0\;,\;\frac{2}{3}\;)$B.$(\;0\;,\;\frac{1}{2}\;]$C.$[\;\frac{1}{3}\;,\;1\;)$D.$[\;\frac{1}{2}\;,\;1\;)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和為Sn,且${S_n}=2{a_n}-2(n∈{N^*})$.
(1)求數(shù)列{an}的通項an
(2)設(shè)cn=(n+1)an,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.3、已知函數(shù)$f(x)=\left\{\begin{array}{l}1-{2^x},x≤0\\{x^2},x>0\end{array}\right.$,則f[f(-1)]=( 。
A.2B.1C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知三條不重合的直線m,n,l 和兩個不重合的平面 α,β 下列命題正確的是( 。
A.若m∥n,n?α,則 m∥αB.若α⊥β,α∩β=m,m⊥n,則 n⊥α
C.若l⊥n,m⊥n,則 l∥mD.若l⊥α,m⊥β,且 l⊥m,則 α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若一個圓柱的正視圖與其側(cè)面展開圖是相似矩形,則這個圓柱的全面積與側(cè)面積之比為( 。
A.$1+\sqrt{π}$B.1+$\frac{1}{{\sqrt{π}}}$C.$1+\frac{1}{{\sqrt{2π}}}$D.$1+\frac{1}{{2\sqrt{π}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列結(jié)論正確的是( 。
A.命題“如果p2+q2=2,則p+q≤2”的否命題是“如果p+q>2,則p2+q2≠2”
B.命題p:?x∈[0,1],ex≥1,命題q:?x∈R,x2+x+1<0,則p∨q為假
C.“若am2<bm2,則a<b”的逆命題為真命題
D.若${(\sqrt{x}-\frac{1}{{2\root{3}{x}}})^n}$的展開式中第四項為常數(shù)項,則n=5

查看答案和解析>>

同步練習(xí)冊答案