5.已知等差數(shù)列{an}中,a8=$\frac{π}{2}$,若函數(shù)f(x)=sin2x-2cos2$\frac{x}{2}$,設(shè)cn=f(an),則數(shù)列{cn}的前15項(xiàng)的和為( 。
A.0B.1C.15D.-15

分析 等差數(shù)列{an}中,a8=$\frac{π}{2}$,可得a1+a15=a2+a14=…=2a8=π.函數(shù)f(x)=sin2x-2cos2$\frac{x}{2}$=sin2x-cosx-1,又cn=f(an),可得c1+c15=f(a1)+f(a15)=2sin(a1+a15)cos(a1-a15)-2=-2.即可得出.

解答 解:∵等差數(shù)列{an}中,a8=$\frac{π}{2}$,
∴a1+a15=a2+a14=…=2a8
函數(shù)f(x)=sin2x-2cos2$\frac{x}{2}$=sin2x-cosx-1,
又cn=f(an),
∴c1+c15=f(a1)+f(a15)=sin2a1-cosa1-1+sin2a15-cosa15-1=2sin(a1+a15)cos(a1-a15)-2=-2.
f(a8)=$sinπ-cos\frac{π}{2}$-1=-1.
∴數(shù)列{cn}的前15項(xiàng)的和=-2×7-1=-15.
故選:D.

點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì)、三角函數(shù)的化簡,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某種型號的電子管的壽命X(以小時(shí)計(jì))具有以下概率密度;
f(x)=$\left\{\begin{array}{l}{1000/{x}^{2}}&{x>1000}\\{0}&{其它}\end{array}\right.$,現(xiàn)有一大批此種管子(設(shè)各電子管損壞與否相互獨(dú)立),任取5只,問其中至少有2只壽命大于1500小時(shí)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.將y=cos($\frac{1}{2}$x-$\frac{π}{3}$)的圖象向右平移$\frac{π}{3}$后函數(shù)圖象關(guān)于原點(diǎn)對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)f(x,y)=x2+y2-2x+4y+4.
(I)若f(x,x)>2ax2+2ax對于任意的實(shí)數(shù)x都恒成立,求實(shí)數(shù)a的最值范圍;
(Ⅱ)是否存在斜率為1的直線l,使l被曲線C:f(x,y)=8截得的弦為AB,且以AB為直徑的圓恰好過曲線C的中心?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x2(x-a),其中a為正實(shí)數(shù).
(1)當(dāng)x∈(0,1)時(shí)函數(shù)f(x)的圖象上任意一點(diǎn)P處的切線斜率為k,若k≥-1,求a的范圍;
(2)若a=-2,求曲線過點(diǎn)Q(-1,f(-1))的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x-1)是偶函數(shù),且在(0,+∞)上單調(diào)遞增,下列說法正確的是( 。
A.f(2${\;}^{\frac{1}{8}}$)>f(($\frac{1}{8}$)2)>f(log2($\frac{1}{8}$))B.f(($\frac{1}{8}$)2)>f(2${\;}^{\frac{1}{8}}$)>f(log2($\frac{1}{8}$))
C.f(2${\;}^{\frac{1}{8}}$)>f(log2($\frac{1}{8}$))>f(($\frac{1}{8}$)2D.f(($\frac{1}{8}$)2)>f(log2($\frac{1}{8}$))>f(2${\;}^{\frac{1}{8}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)D是△ABC中BC邊上的中點(diǎn),過D作一條直線分別交直線AB、AC于點(diǎn)M、N,設(shè)$\overrightarrow{AM}$=m$\overrightarrow{AB}$,$\overrightarrow{AN}$=n$\overrightarrow{AC}$,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,且m>0,n>0.
(1)分別用向量$\overrightarrow{a}$、$\overrightarrow$表示向量$\overrightarrow{MD}$與$\overrightarrow{MN}$;
(2)試探究:$\frac{1}{m}$+$\frac{1}{n}$是否為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知△ABC中,A(-4,3),B(2,2),C(-1,8),求向量$\overrightarrow{AB}$,$\overrightarrow{BC}$,$\overrightarrow{CA}$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(x)為定義在R上的可導(dǎo)函數(shù),下列命題:
①若y=f(x)是奇函數(shù),且在(0,+∞)上單調(diào)遞增,則當(dāng)x<0時(shí),f(x)<0;
②若對任意的x>0,都有f(x)<f(0),則函數(shù)y=f(x)在[0,+∞)上一定是減函數(shù);
③“函數(shù)y=|f(x)|的圖象關(guān)于y軸對稱”是“y=f(x)為奇函數(shù)”的必要不充分條件;
④若存在xi∈[a,b](1≤i≤n;n≥2;i,n∈N+),當(dāng)x1<x2<x3<…<xn時(shí),有f(x1)<f(x2)<f(x3)<…<f(xn),則函數(shù)y=f(x)在區(qū)間[a,b]上是單調(diào)遞增;
⑤若?x0∈(a,b)使f′(x0)=0,且f′(a)f′(b)<0,則x=x0為函數(shù)y=f(x)的一個(gè)極值點(diǎn).
其中正確命題的序號為①③⑤.

查看答案和解析>>

同步練習(xí)冊答案