5.在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足acosC+ccosA=2bcosB.
(1)求角B的值;
(2)求y=2sin2A+cos(A-C)的取值范圍.

分析 (1)利用已知條件以及正弦定理求出B的正弦值,然后求角B的大小;
(2)依題意,可求得$\frac{π}{6}$<A<$\frac{π}{2}$,利用二倍角的余弦與兩角差的余弦及正弦函數(shù)的單調(diào)性即可求得2sin2A+cos(A-C)的取值范圍.

解答 (本題滿分為12分)
解:(1)由acosC+ccosA=2bcosB以及正弦定理可知,
sinAcosC+sinCcosA=2sinBcosB,
即sin(A+C)=2sinBcosB.
因?yàn)锳+B+C=π,所以sin(A+C)=sinB≠0,
所以cosB=$\frac{1}{2}$.
∵B∈(0,π)
∴B=$\frac{π}{3}$.…(4分)
(2)由(1)知A+C=$\frac{2π}{3}$,
∴C=$\frac{2π}{3}$-A,
∴2sin2A+cos(A-C)
=1-cos2A+cos(2A-$\frac{2π}{3}$)
=1-cos2A-$\frac{1}{2}$cos2A+$\frac{\sqrt{3}}{2}$sin2A
=$\frac{\sqrt{3}}{2}$sin2A-$\frac{3}{2}$cos2A+1
=$\sqrt{3}$sin(2A-$\frac{π}{3}$)+1,…(8分)
∵由于為銳角三角形,可得$\frac{π}{6}$<A<$\frac{π}{2}$,
∴0<2A-$\frac{π}{3}$<$\frac{π}{6}$,
∴0<sin(2A-$\frac{π}{3}$)≤$\frac{1}{2}$,
∴1<$\sqrt{3}$sin(2A-$\frac{π}{3}$)+1≤$\frac{\sqrt{3}}{2}$+1,
∴2sin2A+cos(A-C)的取值范圍為(1,$\frac{\sqrt{3}}{2}$+1].…(12分)

點(diǎn)評(píng) 本題考查正弦定理,三角形的內(nèi)角和的應(yīng)用,也可以利用余弦定理解答本題,注意角的范圍的應(yīng)用,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=(x-a)2lnx,a∈R.
(1)若$a=3\sqrt{e}$,其中e為自然對(duì)數(shù)的底數(shù),求函數(shù)$g(x)=\frac{f(x)}{x}$的單調(diào)區(qū)間;
(2)若函數(shù)f(x)既有極大值,又有極小值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知三棱錐S-ABC的三條側(cè)棱相等,體積為$\frac{\sqrt{3}}{4}$,AB=BC=$\sqrt{3}$,∠ACB=30°,則三棱錐S-ABC外接球的體積為$\frac{32}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線l與曲線y=ex相切于點(diǎn)A(0,1),直線l的方程是x-y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}滿足:a1=3,an+1=a${\;}_{n}^{2}$-nan+1.
(Ⅰ)求a2,a3的值;
(Ⅱ)猜測(cè)an與n+2的大小關(guān)系,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在如圖所示的幾何體中,四邊形CDEF為正方形,四邊形ABCD為等腰梯形,AB∥CD,AB=2BC,∠BAC=30°,AC⊥FB.
(Ⅰ)求證:AC⊥平面FBC;
(Ⅱ)求FC與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知D,E是△ABC邊BC的三等分點(diǎn),點(diǎn)P在線段DE上,若$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,則xy的取值范圍是( 。
A.[$\frac{1}{9}$,$\frac{4}{9}$]B.[$\frac{1}{9}$,$\frac{1}{4}$]C.[$\frac{2}{9}$,$\frac{1}{2}$]D.[$\frac{2}{9}$,$\frac{1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xoy中,已知圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+2cosθ}\\{y=2sinθ}\end{array}}\right.$(θ為參數(shù)),直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=5-2t}\\{y=3-t}\end{array}}\right.$(t為參數(shù)),定點(diǎn)P(1,1).
(Ⅰ)以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,單位長(zhǎng)度與平面直角坐標(biāo)系下的單位長(zhǎng)度相同建立極坐標(biāo)系,求圓C的極坐標(biāo)方程;
(Ⅱ)已知直線l與圓C相交于A,B兩點(diǎn),求||PA|-|PB||的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow m=(2acosx,sinx)$,$\overrightarrow n=(cosx,bcosx)$,函數(shù)$f(x)=\overrightarrow m•\overrightarrow n-\frac{{\sqrt{3}}}{2}$,函數(shù)f(x)在y軸上的截距為$\frac{{\sqrt{3}}}{2}$,與y軸最近的最高點(diǎn)的坐標(biāo)是$(\frac{π}{12},1)$.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)將函數(shù)f(x)的圖象向左平移φ(φ>0)個(gè)單位,再將圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來的2倍,得到函數(shù)y=sinx的圖象,求φ的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案