分析 (1)設(shè)動(dòng)點(diǎn)G的坐標(biāo)(x,y),求出直線EG的斜率,直線FG的斜率,利用已知條件求解即可.
(2)由圓O與直線l相切,知m2=k2+1,聯(lián)立直線與橢圓,得(1+2k2)x2+4kmx+2m2-2=0,由直線l與橢圓交于兩個(gè)不同點(diǎn),得到k2>0,利用$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{2}{3}$時(shí),求出k,即可求△AOB的面積.
解答 解:(1)已知E(0,1),F(xiàn)(0,-1),設(shè)動(dòng)點(diǎn)G的坐標(biāo)(x,y),
∵動(dòng)點(diǎn)G滿足:直線EG與直線FG的斜率之積為-$\frac{1}{2}$,
∴$\frac{y-1}{x}×\frac{y+1}{x}$=-$\frac{1}{2}$,即$\frac{{x}^{2}}{2}+{y}^{2}=1(x≠0)$.
(2)∵圓O與直線l相切,∴$\frac{|m|}{\sqrt{{k}^{2}+1}}$=1,即m2=k2+1,
聯(lián)立直線與橢圓,消去y,得(1+2k2)x2+4kmx+2m2-2=0,
∵直線l與橢圓交于兩個(gè)不同點(diǎn),∴△=(4km)2-4(1+2k2)(2m2-2)>0,
∴k2>0,
設(shè)A(x1,y1),B(x2,y2),則x1+x2=-$\frac{4km}{1+2{k}^{2}}$,x1•x2=$\frac{2{m}^{2}-2}{1+2{k}^{2}}$,
∴y1y2=(kx1+m)(kx2+m)=$\frac{1-{k}^{2}}{1+2{k}^{2}}$,
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=$\frac{1+{k}^{2}}{1+2{k}^{2}}$=$\frac{2}{3}$
∴k2=1,
∴S△ABO=$\frac{1}{2}\sqrt{1+{k}^{2}}•\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{\frac{2({k}^{4}+{k}^{2})}{4({k}^{4}+{k}^{2})+1}}$=$\frac{2}{3}$.
點(diǎn)評(píng) 本題考查直線與橢圓方程的綜合應(yīng)用,橢圓方程的求法,考查向量知識(shí)的運(yùn)用,考查分析問題解決問題的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在地平線上 | B. | 仰角為30° | C. | 仰角為45° | D. | 仰角為60° |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com