7.一艘船在航行過程中發(fā)現(xiàn)前方的河道上有一座圓拱橋.在正常水位時,拱橋最高點距水面8m,拱橋內(nèi)水面寬32m,船只在水面以上部分高6.5m,船頂部寬8m,故通行無阻,如圖所示.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求正常水位時圓弧所在的圓的方程;
(2)近日水位暴漲了2m,船已經(jīng)不能通過橋洞了.船員必須加重船載,降低船身在水面以上的高度,試問:船身至少降低多少米才能通過橋洞?(精確到0.1m,$\sqrt{6}≈2.45$)

分析 (1)在正常水位時,設(shè)水面與橋橫截面的交線為x軸,過拱橋最高點且與水面垂直的直線為y軸,建立平面直角坐標(biāo)系建立坐標(biāo)系,利用|CD|=|CB|,確定圓的方程;
(2)令x=4時,求得y≈7.6,即橋拱寬為8m的地方距正常水位時的水面約7.60m,即可求得通過橋洞,船身至少應(yīng)該降低多少.

解答 解:(1)在正常水位時,設(shè)水面與橋橫截面的交線為x軸,
過拱橋最高點且與水面垂直的直線為y軸,建立平面直角坐標(biāo)系,
如圖所示,則A,B,D三點的坐標(biāo)分別為(-16,0),(16,0),(0,8).
又圓心C在y軸上,故可設(shè)C(0,b).…(3分)
因為|CD|=|CB|,所以$8-b=\sqrt{{{16}^2}+{b^2}}$,解得b=-12.…(6分)
所以圓拱所在圓的方程為:x2+(y+12)2=(8+12)2=202=400…(8分)
(2)當(dāng)x=4時,求得y≈7.6,即橋拱寬為8m的地方距正常水位時的水面約7.60m,…(10分)
距漲水后的水面約5.6m,因為船高6.5m,頂寬8m,
所以船身至少降低6.5-5.6=0.9(m)以上,船才能順利通過橋洞.…(12分)

點評 本題考查圓的標(biāo)準(zhǔn)方程,考查圓的方程的運用,正確建立坐標(biāo)系是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知隨機變量X服從正態(tài)分布N(2,σ2),其正態(tài)分布密度曲線為函數(shù)f(x)的圖象,且${∫}_{0}^{2}$f(x)dx=$\frac{1}{3}$,則P(x>4)=(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在四棱錐P-ABCD中,AD∥BC,AB⊥AD,E是AB的中點,AB=AD=PA=PB=2,BC=1,PC=$\sqrt{5}$.
(Ⅰ)求證:CF∥平面PAB;
(Ⅱ)求證:PE⊥平面ABCD;
(Ⅲ)求二面角B-PA-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在三棱錐P-ABC中,AB⊥BC,平面PAB⊥平面ABC,BC=2AB=1,PC=$\sqrt{3}$,∠PBA=$\frac{π}{4}$.
(1)求證:BC⊥PB;
(2)求二面角A-PC-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=SB,點M是SD的中點,AN⊥SC,且交SC于點N.
(1)求證:SC⊥平面AMN;
(2)求二面角D-AC-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的側(cè)面PAB的面積是( 。
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖所示,在長方體ABCD-A1B1C1D1中,AA1=AD=1,E為CD的中點.
(1)求證:B1E⊥AD1
(2)若二面角A-B1E-A1的大小為30°,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在平面直角坐標(biāo)系xOy中,E,F(xiàn)兩點的坐標(biāo)分別為(0,1),(0,-1),動點G滿足:直線EG與直線FG的斜率之積為-$\frac{1}{2}$.
(1)求動點G的軌跡方程;
(2)⊙O是以EF為直徑的圓,一直線l:y=kx+m與⊙O相切,并與動點G的軌跡交于不同的兩點A,B.當(dāng)$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{2}{3}$時,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.為觀察高血壓的發(fā)病是否與性別有關(guān),某醫(yī)院隨機調(diào)查了60名住院患者,將調(diào)查結(jié)果做成了一個2×2列聯(lián)表,由于統(tǒng)計員的失誤,有兩處數(shù)據(jù)丟失,既往的研究證實,女性患者高血壓的概率為0.4,如果您是該統(tǒng)計員,請你用所學(xué)知識解答如下問題:
患高血壓不患高血壓合計
m6
12n
合計60
(1)求出m,n,并探討是否有99.5%的把握認為患高血壓與性別有關(guān)?說明理由;
(2)已知在不患者高血壓的6名男性病人中,有3為患有胃病,現(xiàn)從不患有高血壓疾病的6名男性中,隨機選出2名進行生活習(xí)慣調(diào)查,求這2人恰好都是胃病患者的概率.
附:①臨界值表:
P(K2≥k00.0100.0050.001
k06.6357.87910.828
②${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

同步練習(xí)冊答案